
Efficient GPU-accelerated Join Optimization for
Complex Queries

Vasilis Mageirakos1†, Riccardo Mancini2, Srinivas Karthik3#, Bikash Chandra3, Anastasia Ailamaki3,4
1University of Patras 2Scuola Superiore Sant’Anna 3EPFL 4RAW Labs SA

†vasilis.mageirakos@gmail.com 2rickyman7@gmail.com #skarthikv@gmail.com 3{firstname.lastname}@epfl.ch

Abstract—Analytics on modern data analytic and data ware-
house systems often need to run large complex queries on
increasingly complex database schemas. A lot of progress has
been made on executing such complex queries using techniques
like scale out query processing, hardware accelerators like GPUs
and code generation techniques. However, optimization of such
queries remains a challenge. Existing optimal solutions either
cannot be effectively parallelized, or are inefficient while doing
a lot of unnecessary work.

In this demonstration, we present our system, GPU-QO, which
aims to demonstrate query optimization techniques for large
analytical queries using GPUs. We first demonstrate Massively
Parallel Dynamic Programming (MPDP) – a novel query optimiza-
tion technique that can run on GPUs to generate optimal plans
in a (massively) parallel and efficient manner. We then showcase
IDP2-MPDP and UnionDP – two heuristic techniques, again using
GPUs, that can even optimize queries containing 1000s of joins.
Furthermore, we compare our techniques with current state-of-
the-art solutions, and demonstrate how our techniques can reduce
optimization time for optimal solutions by nearly two orders of
magnitude and produce much better query plans for heuristics
(up to 7x).

Index Terms—Parallel query optimization, GPU query opti-
mization, Dynamic programming

I. INTRODUCTION

Complex analytical queries are becoming increasingly im-
portant in a world where information derived from the data
are key drivers for policy decisions, clinical research and
business strategies. With the growing pace of data and query
complexities, certain query processing modules have evolved
to keep pace with it. For instance, modern data warehouses
use sophisticated data layouts, scale-out and/or scale-up query
processing, hardware accelerators (GPUs, FPGAs), just-in-
time (JIT) code generation, and approximate query processing
to execute complex queries in real-time. However query opti-
mization may not benefit from these and remains a challenge.

In order to efficiently run such large analytical queries,
query optimizers must choose an optimal query execution
plan. One of the crucial aspects for choosing an optimal query
plan is choosing an optimal join order which is known to be
NP-hard. For instance, PostgreSQL takes as much as around
160 secs to find the optimal plan even for a complex 21-join
query. Hence, systems fall back to heuristics beyond a certain
threshold number of relations (e.g. 12 rels in PostgreSQL).

* This work was partially funded by the EU H2020 project SmartDataLake
(825041).

† Work done partially while at EPFL

Existing optimal join order optimization techniques can be
categorized under vertex-based or edge-based enumeration.
The shortcomings of these techniques are: a) vertex-based
techniques are inefficient and may generate up to orders of
magnitude more intermediate states than required (detailed in
[1]); b) edge-based enumeration solutions cannot be efficiently
parallelized, thus, having limited performance gains from
parallelization using multicore CPUs and GPUs [2], [3]. As
for heuristics, prior solutions either produce low-quality plans
or cannot scale to 1000s of relations. The existence of such
large queries and the inability of existing optimizers to handle
them is described in [4].

Our objective is to improve the performance of query opti-
mizers for complex queries, i.e. large join queries (≥ 10 rels),
using the massive parallelism offered by GPUs. Specifically,
we aim to 1) Reduce the query optimization time of optimal
solutions; 2) Improve the quality of heuristic techniques (that
can scale to 1000s of rels) while being cheap to compute.

Contributions: We propose a new dynamic programming
(DP) based join ordering algorithm, MPDP (massively parallel
DP), that can efficiently use the massive parallelism offered
by GPUs. Also, to overcome the limitations of inefficient
vertex-based enumeration, we develop a novel plan enumer-
ation technique that evaluates close to the optimal number
of intermediate states. MPDP uses a hybrid of vertex and
edge based enumeration, each enumerating on carefully chosen
relation subsets. MPDP on GPU for around 25 relations, is up
to 3 orders of magnitude faster than PostgreSQL. It is also up
to 80x faster than the state-of-the-art parallel CPU algorithm,
and up to 19x than the state-of-the-art parallel GPU algorithm
[1] in our setup.

For the heuristic solution, we integrate MPDP into an
existing heuristic, IDP2 [5], and propose a novel join graph
topology conscious heuristic, UnionDP. Due to the algorithmic
efficiency and high parallelizability of MPDP, as well as
systematic exploration by IDP2 and UnionDP, we get better
quality plans. Our techniques can scale to 1000s of relations
while producing up to 7x (UnionDP) better plans compared
to the state-of-the-art solution.

In this paper, we demonstrate our system, GPU-QO, which
is an efficient GPU-accelerated query optimizer built inside
PostgreSQL. The system can handle large analytical queries,
and our efficient GPU implementation achieves significant
performance benefits (as described in Section II-B). To the
best of our knowledge, GPU-QO is the first GPU-accelerated



query optimizer in a widely used database system.
We present MPDP and its GPU implementation architecture

in Section II. Then, in Section III, we discuss our two heuristic
solutions. Details of our optimal and heuristic techniques are
discussed in [1]. We provide an overview of the interactive
demonstration in Section IV along with the user interface
and some examples. The demonstration would help users
understand the query optimization challenges for large join
queries. They will be able to get insights on the impact of
join order, along with improvements our techniques provide
in comparison with the state-of-the-art solutions.

II. PARALLEL QUERY OPTIMIZER

A. Optimal Solutions

Dynamic programming (DP) techniques are one of the
standard ways to find the best join order. Systems such as
PostgreSQL and IBM DB2 adopt DPSIZE [6] – a vertex-
based enumeration using DP. DPSIZE explores the search
space in increasing sub-relation sizes, while another vertex-
based enumeration DPSUB [7], enumerates the power-set of
relations in subset precedence order. Assuming no cross joins
– a widely used rule of thumb – these algorithms do not scale
well with large joins, since they evaluate a significant number
of invalid Join-Pairs. A valid Join-Pair is a pair of relation
subsets to be joined which does not result in cross joins [1].

In contrast DPCCP [3], an edge-based enumeration algo-
rithm, outperforms DPSIZE and DPSUB, by evaluating only
valid Join-Pairs. Such edge-based enumeration algorithms are
difficult to parallelize. DPE [2] proposes a framework that can
parallelize DPCCP. More recently, Meister et al. [8] proposed
GPU versions of DPSIZE and DPSUB algorithms.

Existing optimization techniques thus are either efficient
(do not evaluate invalid join pairs like DPCCP) or parallelize
well (like DPSUB and DPSIZE), but not both. The only
optimization technique that is both efficient and parallelizable
is DPE, but that has limited parallelizability. In order to
minimize the optimization time, our goal is to design an
efficient optimization algorithm that is highly parallelizable,
while minimizing the evaluation of invalid Join-Pairs.

Our key contribution is a novel enumeration technique that
combines vertex-based and edge-based enumeration system-
atically. This enables us to leverage the power of massive
parallelism offered by GPUs (hardware benefits), while evalu-
ating only a few invalid Join-Pairs (software benefits). This is
achieved by identifying blocks (or biconnected components) in
the join graph. We perform a vertex-based enumeration within
the blocks to create Join-Pairs at a block-level. Then, we
create a Join-Pair for the whole graph, by edge enumeration,
using the block Join-Pairs as the seed nodes. Since the
expensive vertex-based enumeration is just limited to blocks,
it is more efficient and highly parallelizable. When evaluated
on MusicBrainz real-world dataset, MPDP is nearly two orders
of magnitude faster compared to parallel state-of-the-art tech-
niques for large analytical queries. Thus, in PostgreSQL, the
heuristic-fall-back limit increases from 12 to 25 rels with the
same time budget.

Query Executor
CPU

Query Optimizer
Sub-Query 

Planner

Evaluate

Prune

GPU

Unrank

Catalog

Optimal Query 
Execution Plan

Filter

EvaluateEvaluate Evaluate Evaluate

Scatter

Memo Table
Store Best SubPlan

Aggregate 
Planner

Best Plan 
Encoding

UnrankUnrank Unrank Unrank

ScatterScatterScatter Scatter

Warp level
Parallelism

Thread level
Parallelism

(repeated for each DP level)

Fig. 1: MPDP Architecture on GPUs

B. MPDP Architecture

Figure 1 shows the architecture of our GPU-accelerated
optimizer, MPDP. We build on the design mooted in [8]. The
DP based optimization happens at several levels, where at each
level i, the best sub-plan for all possible i relations will be
found. Leveraging the principle of optimality helps us get the
best plan at the final level.

Since the metadata usually resides in CPU main memory,
in MPDP, the CPU calls functions in the GPU to find all the
best sub-plans for level i. This is repeated for every level in
the DP lattice to get the final plan. In the GPU, the optimal
sub-plans at each level is found using the following phases:
1) Unrank: All possible sets of relations of size i, Si, are

unranked using a combinatorial scheme [8]. These are
stored in a temporary contiguous memory allocation for
use in subsequent phases.

2) Filter: All subsets in Si, that do not form a valid join are
filtered. This results in compacting the temporary array via
thrust::remove in GPU.

3) Evaluate: This phase corresponds to evaluating (i.e. cost-
ing) Si using warp-level parallelism. The warp first finds
all the blocks in the relation subset, and then each thread
works on different Join-Pairs. Later, each thread unranks
the blocks, checks the validity and computes its cost.

4) Prune: The best Join-Pair for each Si is chosen in parallel
using a classical warp reduction.

5) Scatter: All the key-value pairs (Si, bestJoin(Si)) are
stored in a memo table for use in subsequent levels. This
phase is a parallel store on the GPU hash table.

Finally, the best plan, using a plan encoding, is sent to the
aggregate plan builder in the CPU from the GPU memo table.
The decoded plan is finally executed by the engine to return
the results to the user. We also enhance the above design by
(a) kernel fusion of prune and scatter phases to reduce global
memory writes; (b) avoiding branch divergence due to ‘If’
condition by using collaborative context collection [9].

III. APPROXIMATION HEURISTICS

Join Ordering is an NP-Hard problem, and as the number
of relations further increase, say beyond 30 rels, we need
to resort to heuristics. PostgreSQL uses GE-QO, a genetic
optimization algorithm. GOO [10], proposes a greedy heuristic
that constructs bushy join trees by ordering joins such that it



minimizes intermediate join cardinalities. While IKKBZ [11]
limits the search space to left-deep join trees. More recently,
LinDP [4], proposes an adaptive optimization technique as a
function of the number of relations in the input query. They
use either DPCCP [3], linearized DP or IDP2 [5] with GOO
and linearized DP depending on the query size. Linearized DP
optimizes the left-deep plan found by IKKBZ, and can scale to
1000s of relations. The main issue with heuristic techniques
is that they produce low quality plans. Our objective is to
use GPU parallelism to systematically explore a larger search
space, and hence produce better quality plans.

We propose two heuristics, IDP2-MPDP and UnionDP, both
of which can scale with queries containing 1000s of rels. The
key idea is to decompose the problem into smaller chunks
of size k such that each chunk can be optimized with MPDP
(using GPUs), and finally combine these (sub)solutions to get
the final plan. The value of k represents the maximum number
of relations for which MPDP can optimize within a timeout.

1) IDP2-MPDP: We build on IDP2 [5] for this heuristic
solution. The idea in IDP2 is to first generate a valid join
plan and then greedily improve the solution until convergence.
Specifically, in each iteration, it finds the costliest sub-tree
of size k, optimizes it using an optimal DP algorithm, and
replaces the sub-tree if it generated a cheaper sub-plan. Using
MPDP as the DP algorithm results in much better plans due
to its massive parallelizability and efficient enumeration.

However, the performance of IDP2, on certain join graphs,
due to a possibly weak initial plan and its greedy nature, may
get stuck on a poor local optima. This results in sub-optimal
join order choices (details in [1]).

2) UnionDP: To address the above issue, we propose,
UnionDP, wherein the key contribution is to develop a graph
topology - conscious heuristic. In order to generate tractable
subproblems, the idea is to partition the graph based on
the following sub-goals which trade-off with each other: (a)
Minimize the number of partitions/chunks (with size ≤ k)
as partitions misses join order exploration across them; (b)
maximize the sum of weights of cut-edges across partitions
(edge weights assigned using PostgreSQL cost model) – this
way costlier joins are optimized as late as possible.

UnionDP uses the Union-Find data structure to efficiently
keep track of partition information. First, it initializes the join
graph with unit partition sizes, then the union operation is
applied to neighbouring partitions in a minimum union-size
order. When a tie exists, the edge with minimum weight
is used to break it. Once union operation can no longer be
applied, these partitions are individually optimized by MPDP.
Finally, the above procedure is recursively applied until the
entire graph has been optimized. At 200 rels, query plans
produced by UnionDP are around 7x cheaper compared to
LinDP.

IV. DEMONSTRATION

We will showcase our system that demonstrates our tech-
niques discussed in this paper as well as existing state-of-
the-art solutions. All algorithms are implemented and run in

Fig. 2: Input Window

the PostgreSQL 12 [12] engine with a timeout of 1 min. Our
demonstration setup will run on a server with dual Intel Xeon
E5-2650Lv3 CPU (12 cores / 24 threads on each socket) and
an Nvidia GTX 1080 GPU. For the virtual demonstration, we
will use the video conference software used by ICDE, and
permit users to access our machine on which GPU-QO run.
The access will allow them to interact with GPU-QO.

A. Database and Query Selection

The user will first be greeted with an input window. In this
window, as shown in Figure 2, is where the user can change the
database connection parameters and choose between optimal
or heuristic solutions for optimizing selected queries. The
schema of the query would be taken from the database connec-
tion details. Users can choose to upload a custom schema or
modify the existing schema. Since the demonstration targets
optimization of large queries, input queries can be selected
by selecting an appropriate file that contains the query. Some
example query files will be made available for the demo.
Also, we would share sample scripts which can generate large
database schemas and queries. Users can choose to modify
these scripts, queries or upload new queries.

B. Optimal Solution Scenario

If the user selects the optimal solution scenario, our system
will use the input query and run different types of query
optimization algorithms. We compare the optimization times
of MPDP with: a) the default PostgreSQL optimizer; b) DPE-
DPCCP (state-of-the-art CPU parallel); and c) COMB-GPU
version of DPSUB [8] (state-of-the-art GPU parallel). This
part of the demonstration will help users understand and
visualize the selected join order and see the improvements
in optimization time that our techniques can bring.

Figure 3 shows an example output window for a 20 relation
query on the real-world MusicBrainz [13] dataset. In the top
half of the window, the user will see a visualization of the
optimal join order depicted as a join tree. In the bottom half
of the window, a bar plot shows the optimization time (in ms)
in the log scale. For the example query with the optimal plan
being a bushy tree, MPDP is around 3x faster than DPSUB
(GPU), 30x faster than DPE-DPCCP, and more than 3 orders
of magnitude faster than PostgreSQL plan.



Optimal Solutions

,

Fig. 3: Optimal Solution Window

Fig. 4: Heuristic Solution Window

C. Approximation Solution Scenario

This scenario is meant to optimize very large queries that
may run into even 1000s of relations. In this part of the
demonstration, the user will be able to see the query plans
and understand how different heuristic techniques generate
different join orders. They will also be able to visualize
how the cost of the different join orders (selected by plans)
and corresponding optimization time would be different. Our
system will compare the plans generated by our two heuristics
with: a) GE-QO, the default heuristic used by PostgreSQL, and
b) LinDP [4] (state-of-the-art heuristic).

An example of the output window shown to the user is
captured in Figure 4. For example, a snowflake schema has
been used, and the user has submitted a query with 40 relations

to find the heuristic plans (even though our techniques can
handle much larger join sizes). The output window shows
the plan cost, as estimated by PostgreSQL, for each of the
heuristic techniques for the input query. Two drop down menus
allow the users to select which technique’s plan they want
to visualize and compare. In our example, the LinDP and
UnionDP plans are shown.

A circular visualization is used for the selected join plan
since there are too many relations for the traditional join tree
format. The table names in the example show the depth and
the path from the current table to the central fact table in the
following way: t level1 level2 level3 level4. For example,
t 1 32 8 is a third level table, with t 1 32 as its parent, and
the central fact table t 1 as its grandparent. As we can see
from the figure, UnionDP has produced a query plan that is
2x cheaper than GE-QO, and about 2.5x cheaper than LinDP1.

V. CONCLUSION

We develop efficient optimization techniques that leverage
the massive parallelism offered by modern hardware (GPU).
This can significantly reduce the optimization time of optimal
algorithms, and improve the quality of heuristic solutions.
As a future work, with increasing optimization parameters
in modern times such as cloud analytics, graph analytics
and big data systems, one can leverage our GPU-accelerated
optimization framework to get efficient solutions – more so,
with the advent of declarative machine learning.

REFERENCES

[1] R. Mancini, S. Karthik, B. Chandra, V. Mageirakos, and A. Ailamaki,
“Efficient massively parallel join optimization for large queries,” in
SIGMOD, 2022.

[2] W. Han and J. Lee, “Dependency-aware reordering for parallelizing
query optimization in multi-core CPUs,” in SIGMOD, 2009, pp. 45–
58.

[3] G. Moerkotte and T. Neumann, “Analysis of two existing and one new
dynamic programming algorithm for the generation of optimal bushy
join trees without cross products,” in VLDB, 2006, pp. 930–941.

[4] T. Neumann and B. Radke, “Adaptive optimization of very large join
queries,” in SIGMOD, 2018, pp. 677–692.

[5] D. Kossmann and K. Stocker, “Iterative dynamic programming: a new
class of query optimization algorithms,” ACM TODS, vol. 25, no. 1, pp.
43–82, 2000.

[6] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price, “Access path selection in a relational database management
system,” in SIGMOD, 1979, pp. 23–34.

[7] K. P. Bennett, M. C. Ferris, and Y. E. Ioannidis, “A genetic algorithm for
database query optimization,” in Proc. of the 4th Intl. Conf. on Genetic
Algorithms, 1991, pp. 400–407.

[8] A. Meister and G. Saake, “GPU-accelerated dynamic pro-
gramming for join-order optimization,” 2020. [Online]. Avail-
able: https://www.inf.ovgu.de/inf media/TechnicalReport+02 2020-p-
8268.pdf

[9] F. Khorasani, R. Gupta, and L. N. Bhuyan, “Efficient warp execution in
presence of divergence with collaborative context collection,” in MICRO,
2015, pp. 204–215.

[10] L. Fegaras, “A new heuristic for optimizing large queries,” in DEXA,
1998, pp. 726–735.

[11] R. Krishnamurthy, H. Boral, and C. Zaniolo, “Optimization of nonre-
cursive queries,” in VLDB, 1986, pp. 128–137.

[12] “Postgresql,” https://www.postgresql.org/docs/12/index.html, 2021.
[13] MusicBrainz - The Open Music Encyclopedia, 2021. [Online]. Available:

https://musicbrainz.org/

1IDP2-MPDP and UnionDP have similar performance in this case.


