
Efficient Massively Parallel Join Optimization for LargeQueries*
Riccardo Mancini

Scuola Superiore Sant’Anna

rickyman7@gmail.com

Srinivas Karthik

EPFL

skarthikv@gmail.com

Bikash Chandra

EPFL

bikash.chandra@epfl.ch

Vasilis Mageirakos
†

University of Patras

vasilis.mageirakos@gmail.com

Anastasia Ailamaki

EPFL & RAW Labs SA

anastasia.ailamaki@epfl.ch

ABSTRACT
Modern data analytical workloads often need to run queries over

a large number of tables. An optimal query plan for such queries is

crucial for being able to run these queries within acceptable time

bounds. However, with queries involving many tables, finding the

optimal join order becomes a bottleneck in query optimization. Due

to the exponential nature of join order optimization, optimizers

resort to heuristic solutions after a threshold number of tables. Our

objective is two fold: (a) reduce the optimization time for generating

optimal plans; and (b) improve the quality of the heuristic solution.

In this paper, we propose a new massively parallel algorithm,

MPDP, that can efficiently prune the large search space (via a novel

plan enumeration technique) while leveraging the massive paral-

lelism offered by modern hardware (Eg: GPUs). When evaluated

on real-world benchmark queries with PostgreSQL, MPDP is at least

an order of magnitude faster compared to state-of-the-art tech-

niques for large analytical queries. As a result, we can increase the

heuristic-fall-back limit from 12 relations to 25 relations with the

same time budget in PostgreSQL. Also, to handle queries with even

larger number of tables, we augment MPDP to a well-known heuris-

tic, IDP2 (iterative DP version 2) and a novel heuristic UnionDP. By

systematically exploring a much larger search space, these heuris-

tics provides query plans that are up to 7 times cheaper as compared

to the state-of-the-art techniques while being faster to compute.

CCS CONCEPTS
• Information systems→ Structured Query Language.

KEYWORDS
Parallel Query Optimization, GPU Query Optimization, Dynamic

Programming

ACM Reference Format:
Riccardo Mancini, Srinivas Karthik, Bikash Chandra, Vasilis Mageirakos

†
,

and Anastasia Ailamaki. 2022. Efficient Massively Parallel Join Optimization

* This work was partially funded by the EU H2020 project SmartDataLake (825041)

†
Work done at EPFL

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00

https://doi.org/10.1145/3514221.3517871

for Large Queries*. In Proceedings of the 2022 International Conference on
Management of Data (SIGMOD ’22), June 12–17, 2022, Philadelphia, PA, USA.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3514221.3517871

1 INTRODUCTION
Data analytics in the modern world require processing of queries

on large and complex datasets. In several business reporting tools,

these analytical queries are automatically generated by the system.

Such system generated queries tend to be very long (even up to

megabytes in size). A single analytical query in such scenarios may

contain up to several hundreds of tables, with even moderately

sized queries having nearly 50 relations [6, 7, 27]. Modern data

analytical systems need to efficiently handle such large queries.

To handle such scenarios, there have been significant advances in

query processing technologies such as sophisticated data layouts,

scale-out systems or JIT code generation, while query optimization

module has received much lesser attention. Further, the existence

of these large query scenarios and inability of existing systems to

handle them is described in [7].

Finding an optimal plan, which is essential for such queries

with large number of relations, is a challenging problem as the

search space grows exponentially with the number of relations.

For instance, PostgreSQL takes as much as around 160 secs to

find the optimal plan even for a 21-relation join query
1
, while

SparkSQL takes 1000 secs to plan an 18-relation [19]. Hence, current

systems, resort to heuristics beyond a certain threshold number

of relations (e.g. 12 relation in PostgreSQL). Heuristics, however,

may miss the optimal plan and, in such cases, the query execution

time could be significantly higher than the optimal plan [27]. Even

though heuristics can produce sub-optimal plans, they are required

to process queries with several 100s of relations.

Our goal in this paper is to improve the performance of query

optimizers for large join queries (≥ 10 rels). Specifically, we aim to:

• Reduce the query optimization time of optimal (or exact) algo-

rithms. As a consequence, for a given time budget, increase the

heuristic-fall-back limit in terms of the number of relations.

• Improve the quality of heuristic techniques given a time budget.

In this work, we focus on Dynamic Programming (DP) based

join order optimization, which is typically used in current systems

[2, 4]. Moreover, we consider a solution without cross products

similar to the one used in [25], since it is well known that cross

products do not form part of an optimal join order in most cases.

The efficiency of any such DP technique can be compared based

on two key parameters:

1
The optimization time was measured on a server with 2 Xeon CPUs on star join query

Session 2: Query Processing and Optimization 1 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

122

https://doi.org/10.1145/3514221.3517871
https://doi.org/10.1145/3514221.3517871

select o_orderdate from lineitem, orders, part, customer
where p_partkey = l_partkey and o_orderkey = l_orderkey
and o_custkey = c_custkey

Figure 1: Example TPC-H Query

(1) Number of join pairs evaluated: DP algorithms typically follow

an enumerate-and-evaluate approach. For the example query in

Figure 1, during plan exploration, it generates and evaluate if the

following Join-Pairs can form a valid (sub)plan: 1) (part, orders);

2) (part, lineitem); 3) (orders, lineitem). However, only Join-Pairs
(2) and (3) are valid as there is a corresponding join predicate

in the query, while (1) is not valid since it has to be executed

using a cross join. We provide a more precise description of

valid Join-Pairs in Section 2.1. The fewer the invalid Join-Pairs
evaluated, the more efficient the algorithm is.

(2) Parallelizability: Another way to reduce the optimization time is

to perform the join order optimization in parallel. . For instance,

(𝑝𝑎𝑟𝑡, 𝑙𝑖𝑛𝑒𝑖𝑡𝑒𝑚) and (𝑜𝑟𝑑𝑒𝑟𝑠, 𝑙𝑖𝑛𝑒𝑖𝑡𝑒𝑚) Join-Pairs can be eval-

uated in parallel. Note that not all DP algorithms are easily

parallelizable due to dependency between Join-Pairs (detailed
in Section 2.1). The more parallelizable the algorithm is, the

better is the performance.

A comparison of existing join order optimization techniques

based on the above two parameters is shown in Figure 2. The Y-axis

shows, for an input query, the number of Join-Pairs evaluated by

different DP techniques normalized to the total number of valid

Join-Pairs for the query. The X-axis shows the parallelizability of

the techniques. The evaluation is performed on a 20-relation query

from the real world MusicBrainz dataset.

Optimal Solutions: The traditional DPSIZE algorithm explores

the search space in increasing sub-relation sizes. While DPSUB enu-

merates all the powerset of relations in the subset precedence or-
der. Both DPSIZE and DPSUB evaluate a lot of invalid Join-Pairs
(around 500 times the valid Join-Pairs as captured in the figure),

and hence are inefficient. PDP [10] propose techniques to paral-

lelize DPSIZE but still evaluates a lot of invalid join pairs. Meister

et al. in [24] leverage the GPU parallelism to further reduce query

optimization time. They propose GPU parallel versions of DPSIZE
and DPSUBwhich scales better than the corresponding CPU parallel

ones. Based on the enumeration style, we categorize DPSIZE and
DPSUB as vertex-based enumeration.

In contrast to vertex-based enumeration, an edge-based enumer-
ation, DPCCP [25], evaluates only valid Join-Pairs. It enumerates

the Join-Pairs based on join graph dependencies which makes it

difficult to parallelize. Han et al. [11], parallelizes DPCCP but their
producer-consumer paradigm for plan enumeration and costing

limits its parallelizability [23].

In this paper, we discuss a novel parallel join order optimization

algorithm, MPDP (Massively Parallel DP), which can be executed

over GPUs (running with high degree of parallelism) or CPUs.

The algorithm exploits the best of both DPSUB and DPCCP – high

parallelizability of DPSUB and minimum evaluation of Join-Pairs
from DPCCP. For the 20-rels example, the total Join-Pairs evaluated
by MPDP is only twice that of valid Join-Pairs for the query.

N
o

rm
al

iz
e

d
 e

va
lu

at
e

d
 jo

in
 p

ai
rs

Lo
w

e
r

is
 b

et
te

r

1000

100

10

1

DPSize

Sequential Medium High

DPE

DPSize-GPU

Parallelizability

DPSub

DPCCP

MPDP

DPSub-GPU
PDP

Figure 2: Comparison of join ordering techniques

Approximate/Heuristic Solutions: Since join order optimiza-

tion is NP-Hard in general, for very large join queries, heuristics

must be used. PostgreSQL uses a genetic optimization based algo-

rithm for such queries. When handling 100s of relations, an inter-

esting approach, Iterative Dynamic Programming (IDP) [17], can

be used which iterates over smaller join sizes and then combines

them. Recently, [27] proposes an adaptive optimization, LinDP, for
handling large join queries by linearizing the DP search space.

We augment MPDPwith an existing heuristic algorithm, IDP. Due

to the algorithmic efficiency and high parallelizability nature of

MPDP, we are able to systematically explore amuch larger space com-

pared to state-of-the-art solutions. We also develop a new heuristic

technique, UnionDP, that leverages the join graph topology to get

higher quality solution. The idea is to carefully partition the graph,

use MPDP on each partition, and systematically combine them.

Our main contributions in this paper are as follows:

• We design, MPDP, a new join order algorithm that is highly paral-

lelizable and evaluates only few invalid Join-Pairs. We theoreti-

cally prove that the algorithm produces the optimal join order.

Further, in case of commonly occurring tree join graphs, i.e. for

star and snowflake join graphs, we prove that we do not evaluate
any invalid Join-Pairs. We achieve this by proposing a novel plan

enumeration technique that combines the vertex and edge-based

enumeration. This hybrid enumeration is performed on carefully

chosen subgraphs to make the algorithm massively parallelizable.

• In order to handle queries with even more relations than what is

possible with optimal MPDP, we propose two heuristic solutions

that are algorithmically efficient and highly parallelizable. We

discuss the heuristic solutions in Section 4.

• We evaluate MPDP (both exact and heuristic) on the open source

PostgreSQL database engine using queries on real world Mu-

sicBrainz dataset. To the best of our knowledge, our implementa-

tion on PostgreSQL, is the first GPU-accelerated query optimizer
on a widely used database system. The implementation details

are discussed in Section 5.

Our experimental results, in Section 7 show, for the exact solution,

on the MusicBrainz dataset we get speed up of 80X compared

to state-of-the-art parallel CPU algorithm (DPE) on a 23-relation

query, and a factor 19X compared to state-of-the-art GPU based

DP algorithm (DPSUB-GPU) on a 26-relation query. Also, as a

consequence, we can increase heuristic-fall-back limit from 12

to 25 relations in PostgreSQL with same time budget. Both our

Session 2: Query Processing and Optimization 1 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

123

heuristics can handle join queries with 1000 relations, and sig-

nificantly improves over the state-of-the-technique in terms of

quality of plans produced. Moreover, it also optimizes queries

with 1000 relations under 1 minute.

We discuss relevant background in Section 2 and related work

in Section 6. An extended version of the paper is available at [21].

2 PROBLEM FRAMEWORK AND
BACKGROUND

In this section, we discuss the problem framework and required

notations. Then we describe, DPSUB in detail – the join order algo-

rithm upon which we have built MPDP. Finally, we also present key

graph theory concepts that our solution uses.

2.1 Valid Join-Pair (CCP-Pair)
For a given query, we can represent the joins of the query as a

graph 𝐺 (𝑅, 𝐸), where the vertices 𝑅 = {𝑅1, · · · , 𝑅𝑛} denote the set
of all relations in the FROM clause of the query, while the edges,

𝐸, correspond to the inner join predicates in the query. DP based

join order algorithms typically follow an enumerate-and-evaluate

approach. For 𝑆𝑙𝑒 𝑓 𝑡 , 𝑆𝑟𝑖𝑔ℎ𝑡 ⊂ 𝑅, the DP algorithms enumerate a

Join-Pair(𝑆𝑙𝑒 𝑓 𝑡 , 𝑆𝑟𝑖𝑔ℎ𝑡) and evaluates if it can form a valid sub-plan.

A Join-Pair(𝑆𝑙𝑒 𝑓 𝑡 , 𝑆𝑟𝑖𝑔ℎ𝑡) is said to be valid (or can be joined to create
a sub-plan) if all the following conditions hold true:

(1) Both 𝑆𝑙𝑒 𝑓 𝑡 and 𝑆𝑟𝑖𝑔ℎ𝑡 are non-empty subsets of 𝑅

(2) Induced subgraphs
2
of both 𝑆𝑙𝑒 𝑓 𝑡 and 𝑆𝑟𝑖𝑔ℎ𝑡 in𝐺 are connected

(3) 𝑆𝑙𝑒 𝑓 𝑡 ∩ 𝑆𝑟𝑖𝑔ℎ𝑡 = ∅ (disjoint)
(4) 𝑆𝑙𝑒 𝑓 𝑡 is connected to 𝑆𝑟𝑖𝑔ℎ𝑡 , i.e. there exists a vertex 𝑣𝑙 ∈ 𝑆𝑙𝑒 𝑓 𝑡

and 𝑣𝑟 ∈ 𝑆𝑟𝑖𝑔ℎ𝑡 such that there is an edge (𝑣𝑙 , 𝑣𝑟) ∈ 𝐸
Note that any Join-Pair (𝑆𝑙𝑒 𝑓 𝑡 , 𝑆𝑟𝑖𝑔ℎ𝑡) that satisfies all the above

conditions is a Connected-subgraph Complement Pair (CCP-Pair)
as termed in [25]. We use the terms CCP-Pair and valid Join-Pair
interchangeably in the paper. CCP-Counter represents the total

number of CCP-Pairs in a query, including the symmetric ones.

This count is dependent on join graph topology, and vastly varies

between star, chain, cycle and clique graphs. However, for a given

query, CCP-Counter when profiled on any optimal DP algorithm

such as DPSIZE, DPSUB and DPCCP will produce the same value.

Let us consider an example join graph with 8 relations shown in

Figure 3. Say that a DP algorithm enumerates a Join-Pair(𝑆𝑙𝑒 𝑓 𝑡 , 𝑆𝑟𝑖𝑔ℎ𝑡)
where 𝑆𝑙𝑒 𝑓 𝑡 = {1, 2, 4} and 𝑆𝑟𝑖𝑔ℎ𝑡 = {6, 7, 8}. Since, there is no edge

between these two sets in the join graph, it is not a CCP-Pair. While

𝑆𝑙𝑒 𝑓 𝑡 = {1, 2, 4} and 𝑆𝑟𝑖𝑔ℎ𝑡 = {5, 6} is a CCP-Pair, that can form a

sub-plan with {𝑆𝑙𝑒 𝑓 𝑡 ∪ 𝑆𝑟𝑖𝑔ℎ𝑡 } relations.

2.1.1 Dependencies among Join-Pairs. Since we would like to de-

velop a highly parallel algorithm, we should also keep into consider-

ation the dependencies among Join-Pairs that are enumerated. We

say that a Join-Pair(𝑆𝑙𝑒 𝑓 𝑡 , 𝑆𝑟𝑖𝑔ℎ𝑡) depends on Join-Pair(𝑆 ′
𝑙𝑒 𝑓 𝑡

, 𝑆 ′
𝑟𝑖𝑔ℎ𝑡

)

if either 𝑆𝑙𝑒 𝑓 𝑡 or 𝑆𝑟𝑖𝑔ℎ𝑡 are the result of the join between 𝑆 ′
𝑙𝑒 𝑓 𝑡

and

𝑆 ′
𝑟𝑖𝑔ℎ𝑡

. In order to evaluate N Join-Pairs , they must have no depen-

dency among them. For instance, if the resulting joined-relation

after joining a Join-Pair has the same size 𝑠 , then they will have

2
Given a graph𝐺 = (𝑉 , 𝐸) and a subset 𝑆, ⊂ 𝑉 of vertices, the induced subgraph of

𝑆 in𝐺 is𝐺 [𝑆] = (𝑆, 𝐸′) , where 𝐸′ = {(𝑎,𝑏) | (𝑎,𝑏) ∈ 𝐸 ∧ 𝑎 ∈ 𝑆 ∧𝑏 ∈ 𝑆 } is the set
of edges between nodes in 𝑆 .

1

2

3

4

5

8

6

7

CCP Pairs(S)/Valid-Sets(S)
(1, {2, 3, 4, 5}) ({2, 3, 4, 5}, 1)
(2, {1, 3, 4, 5}) ({1, 3, 4, 5}, 2)
(3, {1, 2, 4, 5}) ({1, 2, 4, 5}, 3)
(5, {1, 2, 3, 4}) ({1, 2, 3, 4}, 5)

S = {1, 2, 3, 4, 5}

Figure 3: Enumeration of CCP-Pairs with Tree Join Graph

no dependencies. Hence, DPSIZE and the modified DPSUB in Algo-

rithm 1 can be parallelized as discussed in [10, 24]. It is also possible

to define a dependency class based on the size of 𝑆𝑙𝑒 𝑓 𝑡 [11].

In this paper, we do not consider cross products which is a well

accepted thumb rule in query optimization [9, 29, 31]. Furthermore,

[9, 31] suggest to avoid cartesian joins unless one has a reason such

as joining small relations, or in case of division operator. This is

primarily because cross products dramatically increase the search

space but rarely produce better quality plans.

2.1.2 Objective. The objective is to develop an algorithm that,

for any input query q, is able to find the optimal join order for 𝑞

without cross-products. This is achieved by the following sub-goals:

(1) minimize the evaluation of Join-Pairs that are not CCP-Pairs;
(2) minimize dependency between Join-Pairs while enumeration.

The first sub-goal is required tominimize evaluating unnecessary

Join-Pairs, while the second is required for the algorithm to be

highly parallelizable (i.e., scale to the massive parallelization offered

by GPUs). Existing algorithms either fail to achieve the first or

second objectives.

2.2 Generic DPSub Algorithm
We now present the generic DPSUB algorithm. The pseudo-code

of DPSUB is shown in Algorithm 1. For the sake of consistency, the

presented pseudo-code is similar to the one used in [25].

The algorithm iterates over all possible subset sizes 𝑖 , and, for

each size, it evaluates all non-empty connected subsets of relations

𝑅1, ..., 𝑅𝑛 (where 𝑛 is the number of relations in the query) of size 𝑖 ,

constructing the best possible plan for each of them. The final plan

is chosen at the root of the dynamic programming lattice. Since

the algorithm enumerates using subsets of relations, it is called

Dynamic Programming Subset, or in short DPSUB.
The algorithm starts with initializing 𝐵𝑒𝑠𝑡𝑃𝑙𝑎𝑛(𝑅𝑖) with its cor-

responding single relation 𝑅𝑖 (Line 2). Here, 𝐵𝑒𝑠𝑡𝑃𝑙𝑎𝑛(𝑆) contains
the best plan for any subset 𝑆 ⊆ 𝑅 at any point of the DP algorithm.

Then, the outermost nested for-loop (Line 4) collects all connected

subsets, 𝑆𝑖 ⊂ 𝑅, of size 𝑖 in each iteration 𝑖 (Line 5). Further, in the

middle nested for-loop (Line 6), the goal is to evaluate set S and

get the best plan for it by the end of its iteration (Line 20 - Line 21).

Finally, in the innermost nested for-loop, all possible Join-Pairs
are evaluated to see if it is a CCP-Pair based on the four conditions

discussed in Section 2.1.

(1) Both 𝑆𝑙𝑒 𝑓 𝑡 and 𝑆𝑟𝑖𝑔ℎ𝑡 are non-empty subset of S (Line 12)

Session 2: Query Processing and Optimization 1 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

124

Algorithm 1 : Generic DPSUB

Input: 𝑄𝐼 : Query Information

Output: Best Plan

1: for all 𝑅𝑖 ∈ 𝑄𝐼 .𝑏𝑎𝑠𝑒𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 do
2: BestPlan({𝑅𝑖 }) = 𝑅𝑖
3: end for
4: for 𝑖 := 2 to 𝑄𝐼 .𝑞𝑢𝑒𝑟𝑦𝑆𝑖𝑧𝑒 do
5: 𝑆𝑖 = {𝑆 | 𝑆 ⊆ 𝑅 and |𝑆 | = 𝑖 and S is connected}
6: for all S ∈ 𝑆𝑖 do
7: //the following is done in parallel

8: for all 𝑆𝑙𝑒 𝑓 𝑡 ⊆ S do
9: EvaluatedCounter ++

10: 𝑆𝑟𝑖𝑔ℎ𝑡 = S \ 𝑆𝑙𝑒 𝑓 𝑡
11: /*Begin CCP Block */

12: if 𝑆𝑟𝑖𝑔ℎ𝑡 == ∅ or 𝑆𝑙𝑒 𝑓 𝑡 == ∅ continue
13: if not 𝑆𝑙𝑒 𝑓 𝑡 is connected continue
14: if not 𝑆𝑟𝑖𝑔ℎ𝑡 is connected continue
15: if not 𝑆𝑟𝑖𝑔ℎ𝑡 ∩ 𝑆𝑙𝑒 𝑓 𝑡 = ∅ continue
16: if not 𝑆𝑟𝑖𝑔ℎ𝑡 is connected to 𝑆𝑙𝑒 𝑓 𝑡 continue
17: /* End CCP Block */

18: CCP-Counter ++
19: CurrPlan = CreatePlan(𝑆𝑙𝑒 𝑓 𝑡 , 𝑆𝑟𝑖𝑔ℎ𝑡)

20: if CurrPlan < 𝐵𝑒𝑠𝑡𝑃𝑙𝑎𝑛(𝑆) then
21: 𝐵𝑒𝑠𝑡𝑃𝑙𝑎𝑛(S) = CurrPlan

22: end if
23: end for
24: end for
25: end for
26: return BestPlan(QI.baseRelations) //best plan for the query

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

1.0E+12

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Jo
in

-P
ai

r
C

o
un

te
r

Number of Tables

CCPCounter EvaluatedCounter

Figure 4: EvaluatedCounter and CCP-Counter values for star
join queries using DPSUB.

(2) Both 𝑆𝑙𝑒 𝑓 𝑡 and 𝑆𝑟𝑖𝑔ℎ𝑡 should be connected
3
(Line 13 - Line 14)

(3) 𝑆𝑙𝑒 𝑓 𝑡 and 𝑆𝑟𝑖𝑔ℎ𝑡 should be disjoint (Line 15)

(4) An edge should exist between 𝑆𝑙𝑒 𝑓 𝑡 and 𝑆𝑟𝑖𝑔ℎ𝑡 in its join

graph (Line 16)

All the above conditions are part of what we call as the Connected-
subgraph Complement Pair (CCP) block (Line 12 - Line 16).

If a Join-Pair(𝑆𝑙𝑒 𝑓 𝑡 , 𝑆𝑟𝑖𝑔ℎ𝑡) happens to be a CCP-Pair, then a

plan, currPlan, is created using the set {𝑆𝑙𝑒 𝑓 𝑡 ∪ 𝑆𝑟𝑖𝑔ℎ𝑡 }. If currPlan
is better than the current best plan for S, it is updated accordingly.

Based on the enumeration style, we refer DPSUB to as vertex-based

enumeration.

2.2.1 Implementation Details: All sets and adjacency lists are im-

plemented as bitmap sets. 𝑆𝑖 in line 5 is enumerated using the

combinatorial system presented in [25]. While 𝑆𝑙𝑒 𝑓 𝑡 is obtained by

3
For the sake of brevity, with “subset 𝑆 is connected”, we mean that its induced

subgraph𝐺 [𝑆] in the query graph𝐺 is connected.

enumerating from 1 to 2
|𝑆𝑖 |

, upon expanding the result of 𝑆𝑖 bits

using parallel bit deposit (PDEP). Finally, checking the connectivity

of any set 𝑆 in the CCP block is done by using a grow function from

a random vertex in 𝑆 and checking if all vertices in 𝑆 are reachable

(grow function is explained in more detail in Section 3.2.1).

2.2.2 Parallelization: DPSUB is amenable for parallelization since

sets 𝑆𝑖 are enumerated in increasing size as shown in Algorithm 1.

Specifically, since enumeration of any S of size 𝑖 is independent of

each other, each iteration of the loop can be executed in parallel.

Thus, themiddle nested for-loop (Line 6) can be parallelized. Further,
even the computations in the innermost nested for-loop (Line 8)

iterations are independent (and thus parallelizable), excluding the

𝐵𝑒𝑠𝑡𝑃𝑙𝑎𝑛(𝑆) update, which can be deferred to a later pruning step.

2.3 Shortcomings of DPSUB
The main problem with DPSUB is that it evaluates the Join-Pairs
corresponding to the powerset of Set S (Line 8 of Algorithm 1), and

a small fraction of it ends up being CCP-Pairs. In the algorithm, the

total number of Join-Pairs evaluated and the number of CCP-Pairs
are captured by EvaluatedCounter and CCP-Counter, respectively.
In order to find the relative gap between the two counters, we run

DPSUB for star join graph queries, with varying number of relations.

The results of this evaluation, as shown in Figure 4, suggests that

the gap between EvaluatedCounter and CCP-Counter increases

with larger queries. Further, EvaluatedCounter is around 2805

times larger (relatively) compared to CCP-Counter at 25 relations.

Thus, although, DPSUB can be computed in a massively paralleliz-

able manner, it evaluates a lot of Join-Pairs that are not CCP-Pairs.
This is a motivation for us to design a parallel algorithm which

minimizes the gap between EvaluatedCounter and CCP-Counter.

2.4 Relevant Graph Theoretic Terminologies
We now briefly discuss key graph theoretic terminologies that we

use in our work. We use the graph shown in Figure 5 as an example.

(1) Cut Vertex: A cut vertex in an undirected graph is a vertex whose

removal (and corresponding removal of all the edges incident

on that vertex) increases the number of connected components

in the graph. For the example join graph in Figure 5, {4, 5, 9}
are cut vertices.

(2) Nonseparable graph: A graph 𝐺 is said to be separable if it is

either disconnected or can be disconnected by removing one

vertex. A graph that is not separable is said to be nonseparable.

(3) Biconnected Component or block: A biconnected component (or

block) of a given graph is a maximal nonseparable subgraph.

Note that a block contains some cut vertices of the graph, but

does not have any cut vertex in the block itself. In our example,

{1, 2, 3, 4}; {4, 5}; {5, 9}; {6, 7, 8, 9} are blocks.
(4) Block-Cut Tree: From a given graph G, we can build a bipartite

tree, called block-cut tree, as follows. (1) Its vertices are the

blocks and the cut vertices of G. (2) There exist an edge between

a block and a cut vertex if that cut vertex is included in the

block. In our example, the block-cut tree would be a chain:

{1, 2, 3, 4} − 4 − {4, 5} − 5 − {5, 9} − 9 − {6, 7, 8, 9}.

Session 2: Query Processing and Optimization 1 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

125

Algorithm 2 MPDP:Tree

1: for 𝑖 := 2 to 𝑄𝐼 .𝑞𝑢𝑒𝑟𝑦𝑆𝑖𝑧𝑒 do
2: 𝑆𝑖 = {𝑆 | 𝑆 ⊆ 𝑅 and |𝑆 | = 𝑖 and S is connected}
3: for all S ∈ 𝑆𝑖 do
4: Valid-Join-Pairs(S) = Create Join-Pairs by removing each

edge in subgraph induced by S
5: for all (𝑆𝑙𝑒 𝑓 𝑡 , 𝑆𝑟𝑖𝑔ℎ𝑡) ∈ Valid-Join-Pairs(S) do
6: EvaluatedCounter ++

7: CCP-Counter ++
8: CurrPlan = CreatePlan(𝑆𝑙𝑒 𝑓 𝑡 , 𝑆𝑟𝑖𝑔ℎ𝑡)

9: if CurrPlan < 𝐵𝑒𝑠𝑡𝑃𝑙𝑎𝑛(S) then
10: 𝐵𝑒𝑠𝑡𝑃𝑙𝑎𝑛(S) = CurrPlan

11: end if
12: end for
13: end for
14: end for

3 MPDP: A NEWMASSIVELY PARALLEL
OPTIMAL ALGORITHM

In this section, we discuss our new Massively Parallel Dynamic

Programming algorithm, MPDP. For ease of presentation, we first
discuss the simpler case when the join graph is a Tree, and then

generalize it to arbitrary join graphs. Commonly occurring star and

snowflake join graphs belong to tree scenario [7].

3.1 Tree Join Graphs
3.1.1 Algorithm Description. The pseudo-code of MPDP for the

tree scenario is shown in Algorithm 2. To distinguish MPDP from the

general case, we refer to the algorithm as MPDP:Tree. Note that the
pseudo-code only contains the main for-loop corresponding to eval-
uating set S. We have omitted the rest of the code since it is same

as that used in DPSUB (Algorithm 1). Further, we have highlighted

in red the difference in code between the two algorithms.

The main idea of the algorithm is the following: Since the join

graph is a tree, then the subgraph induced by S is also a tree. Then,

the number of CCP-Pairs of 𝑆 is exactly 𝑖 − 1, which corresponds

to the Join-Pairs formed by removing each edge in the tree induced

by S (Line 4). In Figure 3, for the tree graph, we also enumerate the

Join-Pairs created by removing edges for S = {1, 2, 3, 4, 5}. Given
this insight, we only iterate over all CCP-Pairs (Line 5), create

a plan for it and update the 𝐵𝑒𝑠𝑡𝑃𝑙𝑎𝑛(S) accordingly. Thus, the
algorithm do not incur any CCP conditions checking overheads.

Resulting in EvaluatedCounter being equal to CCP-Counter.
Note that the idea of edge based Join-Pairs join enumeration is

very similar to the one used in DPCCP. However, the key difference

is that DPCCP performs it at whole graph level, while we do it for

subsets S of size 𝑖 . By doing this, apart from efficient enumeration,

we maintain high parallelizability of DPSUB, as both middle and

innermost for-loop are parallelizable between their iterations.

3.1.2 Proof of Correctness. In order to show that our proposed

algorithm is correct, we need to prove the following:

(1) Only the CCP-Pairs corresponding to connected set S are

enumerated, i.e. any Join-Pair(𝑆𝑙𝑒 𝑓 𝑡 , 𝑆𝑟𝑖𝑔ℎ𝑡) ∈ 𝑉𝑎𝑙𝑖𝑑− 𝐽𝑜𝑖𝑛−
𝑃𝑎𝑖𝑟𝑠 (𝑆) is a CCP-Pair (Lemma 1).

(2) All the CCP-Pairs corresponding to connected set S are

enumerated (Lemma 2).

Lemma 1. Any Join-Pair(𝑆𝑙𝑒 𝑓 𝑡 , 𝑆𝑟𝑖𝑔ℎ𝑡) ∈ Valid-Join-Pairs(S) is a
CCP-Pair (Line 4).

Proof. Trivially, both 𝑆𝑙𝑒 𝑓 𝑡 , 𝑆𝑟𝑖𝑔ℎ𝑡 ≠ ∅. Similarly, 𝑆𝑙𝑒 𝑓 𝑡∪𝑆𝑟𝑖𝑔ℎ𝑡 =
S and 𝑆𝑙𝑒 𝑓 𝑡 ∩ 𝑆𝑟𝑖𝑔ℎ𝑡 = ∅ also hold true since the Join-Pair is cre-
ated by removing a single edge in the tree. Then, further both

𝑆𝑙𝑒 𝑓 𝑡 , 𝑆𝑟𝑖𝑔ℎ𝑡 are connected, if not, then S would also be discon-

nected which leads to the contradiction that S is connected. □

Lemma 2. DPSUB and MPDP:Tree evaluate same set of CCP-Pairs.

Proof. Consider a CCP-Pair (𝑆𝑙𝑒 𝑓 𝑡 , 𝑆𝑟𝑖𝑔ℎ𝑡) evaluated by DPSUB.
Then, exactly the same Join-Pair would also be enumerated by

removing the edge that exist, by definition of CCP-Pair, between
the two sets. □

From the above lemmas, the following theorem can be inferred:

Theorem 3. MPDP:Tree finds the optimal join order while evalu-
ating only CCP-Pairs (meeting the CCP-Counter lower bound)

3.2 Generalization
After having seen MPDP:Tree for tree join graphs, generalizing to

join graph with cycles would pose the following challenges:

(1) Edge-based enumeration: With cyclic graphs, removing edges

as in tree scenario may not form a join-pair. For instance in

Figure 5, removing edge (1,4) would not form a Join-Pair.
(2) Vertex-based enumeration: Boils down to the conventional

DPSUB which falls prey to highly inefficient enumeration.

Our contribution is a novel enumeration technique which is a hybrid
of vertex and edge-based enumeration that results in: (1) efficient enu-
meration (i.e. close to minimum Join-Pair evaluation); (ii) highly
parallelizable. This is achieved by identifying blocks (or bicon-

nected components) in the graph. Then, we perform: a) edge-based

enumerated along the cut edges between blocks; b) vertex-based

enumeration within the blocks. Further, a vertex-based enumer-

ation within a block happens by creating Join-Pairs within each

block. Then, using the edge-based enumeration along cut-edges,

we create a Join-Pair for the set S using the block Join-Pair as the
seed nodes. We show the correctness of the algorithm by mapping

the Join-Pair at the block-level to the Join-Pair at the set S level.

Since the expensive vertex-based enumeration is just limited to

blocks, the number of join-pair evaluation reduces from 2
|S |

to

O(no. of blocks ∗ 2 max. block size). For our cyclic graph example, it

reduces from 512 to just 32.

3.2.1 Grow Function. The grow function takes as input a set

of source nodes and restricted nodes (superset of source nodes),

and output all the nodes in the restricted set that are reachable

from source nodes. This is achieved by iteratively adding all the

restricted nodes such that they are connected to at least one node

in the source set, and growing the source set by adding to it. For

example in Figure 5, if source nodes are {1,2,3} and restricted nodes

are {1,2,3,4,5,9}, then grow function returns {1,2,3,4,5,9}.

3.2.2 Algorithm Description. We now present the generalized

MPDP algorithm, the pseudocode of which is presented in Algo-

rithm 3. For the outermost nested for-loop (Line 3), the key dif-

ference from DPSUB is that, instead of iterating over all subsets of

S, we iterate over all subsets of each block in S. This block-level

Session 2: Query Processing and Optimization 1 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

126

1

2
3

4

5
9

6

7
8

S = {1,2,3,4,5}

Blocks = {{1,2,3,4}; {4,5}}

CCPs of block {1,2,3,4}:

({1},{2,3,4}) → ({1},{2,3,4,5})
({2},{1,3,4}) → ({2},{1,3,4,5})
({3},{1,2,4}) → ({3},{1,2,4,5})
({4},{1,2,3}) → ({4,5},{1,2,3})

CCPs of block {4,5}:

({4},{5}) → ({1,2,3,4},{5})
({5},{4}) → ({5},{1,2,3,4})

({1,2},{3,4}) → ({1,2},{3,4,5})
({1,3},{2,4}) → not CCP
({1,4},{2,3}) → ({1,4,5},{2,3})
({2,3},{1,4}) → ({2,3},{1,4,5})
({2,4},{1,3}) → not CCP
({3,4},{1,2}) → ({3,4,5},{1,2})

({1,2,3},{4}) → ({1,2,3},{4,5})
({1,2,4},{3}) → ({1,2,4,5},{3})
({1,3,4},{2}) → ({1,3,4,5},{2})
({2,3,4},{1}) → ({2,3,4,5},{1})

(lb,rb) → (Sleft,Sright)

Figure 5: Example Join Graph with 9 Relations

Algorithm 3 : MPDP generalization (with cycles)

1: for 𝑖 := 2 to 𝑄𝐼 .𝑞𝑢𝑒𝑟𝑦𝑆𝑖𝑧𝑒 do
2: 𝑆𝑖 = {𝑆 | 𝑆 ⊆ 𝑅 and |𝑆 | = 𝑖 and S is connected}
3: for all S ∈ 𝑆𝑖 do
4: 𝐵𝐿𝑂𝐶𝐾𝑆 ← Find-Blocks(S, 𝑄𝐼)
5: for all 𝑏𝑙𝑜𝑐𝑘 ∈ 𝐵𝐿𝑂𝐶𝐾𝑆 do
6: for all 𝑙𝑏 ⊂ 𝑏𝑙𝑜𝑐𝑘 , 𝑙𝑏 ≠ ∅ do
7: EvaluatedCounter++
8: 𝑟𝑏 ← 𝑏𝑙𝑜𝑐𝑘 \ 𝑙𝑏
9: /*Begin CCP Block */

10: if 𝑟𝑏 == ∅ or 𝑙𝑏 == ∅ continue
11: if not 𝑙𝑏 is connected continue
12: if not 𝑟𝑏 is connected continue
13: if not 𝑟𝑏 ∩ 𝑙𝑏 == ∅ continue
14: if not 𝑟𝑏 is connected to 𝑙𝑏 continue
15: /* End CCP Block */

16: CCP-Counter ++
17: S𝑙𝑒 𝑓 𝑡 ← 𝑔𝑟𝑜𝑤 (𝑙𝑏,S \ 𝑟𝑏)
18: S𝑟𝑖𝑔ℎ𝑡 ←S \ S𝑙𝑒 𝑓 𝑡
19: CurrPlan = CreatePlan(𝑆𝑙𝑒 𝑓 𝑡 , 𝑆𝑟𝑖𝑔ℎ𝑡)

20: if CurrPlan < 𝐵𝑒𝑠𝑡𝑃𝑙𝑎𝑛(S) then
21: 𝐵𝑒𝑠𝑡𝑃𝑙𝑎𝑛(S) = CurrPlan

22: end if
23: end for
24: end for
25: end for
26: end for

enumeration results in significantly lower Join-Pair evaluation (Sec-
tion 3.2.4).

We first identify all the blocks
4
in S using Find-Blocks function

(Line 4). The Find-Blocks function can be implemented using the

DFS-based Hopcroft and Tarjan algorithm [12] – a parallel version

of it also exist [30].
5

Next, for each block (Line 5), we iterate over all subsets, 𝑙𝑏 of the

block, compute its complement within the block, 𝑟𝑏, and check that

they form a CCP-Pair for the block (Lines 10 - 14). Next the key

step is to create a CCP-Pair with respect to S using the CCP-Pair
(𝑙𝑏, 𝑟𝑏). For this, we use grow function on computing S𝑙𝑒 𝑓 𝑡 , the set
of reachable nodes within the restriction set,S−𝑟𝑏, from the source

4
In the scenario where we do not find blocks, it boils down to the case of pure vertex-

based enumeration, i.e. DPSUB.
5
For intuition, the cyclic graph can be represent as a Block-cut tree, i.e. a tree of blocks

connected by cut-edges. Note that creation of block-cut tree is not necessary to find

the blocks.

nodes in 𝑙𝑏 (Line 17). Likewise, S𝑟𝑖𝑔ℎ𝑡 , reachable nodes with the

restriction set, S − 𝑙𝑏, that can be visited starting from the source

nodes in 𝑟𝑏 (Line 18). Finally, for each CCP-Pair (S𝑙𝑒 𝑓 𝑡 ,S𝑟𝑖𝑔ℎ𝑡), a
plan is created and 𝐵𝑒𝑠𝑡𝑃𝑙𝑎𝑛(S) is updated accordingly.

Parallelizability: By processing S over blocks, parallelizability of

the algorithm is not impacted compared to DPSUB. This is because,
all the three nested for-loops (Line 3, Line 5, Line 6), including newly
added innermost nested for-loop which can be run in parallel.

3.2.3 Proof of Correctness. The proof structure is along the

lines of Tree scenario. We show the following with respect to set

S: 1) All the CCP-Pairs are enumerated (Lemma 4) ; 2) All pairs

(𝑆𝑙𝑒 𝑓 𝑡 , 𝑆𝑟𝑖𝑔ℎ𝑡) are CCP-Pairs (Lemma 5); .

Lemma 4. DPSUB and MPDP enumerates the same set of CCP-Pairs.

Proof. Let’s take any CCP-Pair(S𝑙𝑒 𝑓 𝑡 ,S𝑟𝑖𝑔ℎ𝑡) enumerated by

DPSUB. Since S𝑙𝑒 𝑓 𝑡 is connected to S𝑟𝑖𝑔ℎ𝑡 , there exists at least one
edge connecting a node in S𝑙𝑒 𝑓 𝑡 and a node in S𝑟𝑖𝑔ℎ𝑡 . We want to

prove that these edges are all inside the same block. If there is only

one edge, it is obvious, since one edge can belong to only one block.

By contradiction, let’s assume there are 2 edges, (𝑛𝑙 , 𝑛𝑟), (𝑛′𝑙 , 𝑛
′
𝑟) |

𝑛𝑙 , 𝑛
′
𝑙
∈ S𝑙𝑒 𝑓 𝑡 ∧ 𝑛𝑟 , 𝑛′𝑟 ∈ S𝑟𝑖𝑔ℎ𝑡 , which are contained in different

blocks. Since S𝑙𝑒 𝑓 𝑡 and S𝑟𝑖𝑔ℎ𝑡 are connected, this would imply the

existence of a cyclic path passing through these two blocks. This

contradicts the maximality property of the block.

Since these edges are all inside the same block, then we can iden-

tify 𝑙𝑏 = S𝑙𝑒 𝑓 𝑡 ∩ 𝑏𝑙𝑜𝑐𝑘 and 𝑟𝑏 = S𝑟𝑖𝑔ℎ𝑡 ∩ 𝑏𝑙𝑜𝑐𝑘 . We want to prove

that (𝑙𝑏, 𝑟𝑏) is a CCP-Pair for the 𝑏𝑙𝑜𝑐𝑘 . In fact, by construction:

𝑙𝑏, 𝑟𝑏 ≠ ∅∧𝑙𝑏, 𝑟𝑏 ∈ S; 𝑙𝑏∩𝑟𝑏 = ∅; 𝑙𝑏 connected to 𝑟𝑏. We only need

to prove that 𝑙𝑏 and 𝑟𝑏 induce connected subgraphs. Let’s consider

𝑙𝑏. By contradiction, let’s assume that it is not connected and let’s

take 𝑛𝑙 , 𝑛
′
𝑙
∈ 𝑙𝑏, belonging to different connected components of

the subgraph induced by 𝑙𝑏. Since S𝑙𝑒 𝑓 𝑡 is connected, then there

is a path outside the block that joins 𝑛𝑙 to 𝑛
′
𝑙
. Since 𝑛𝑙 , 𝑛

′
𝑙
∈ 𝑏𝑙𝑜𝑐𝑘 ,

there exists a path within the block connecting these two nodes.

This implies the existence of a cyclic path spanning multiple blocks,

which contradicts the property of maximality of the block. The

same is true for 𝑟𝑏.

Since (𝑙𝑏, 𝑟𝑏) is a CCP-Pair for the 𝑏𝑙𝑜𝑐𝑘 , it will be enumerated

by MPDP, because it exhaustively enumerates all Join-Pairs in the

block. Finally, we need to show that S𝑙𝑒 𝑓 𝑡 = 𝑔𝑟𝑜𝑤 (𝑙𝑏, 𝑏𝑙𝑜𝑐𝑘 \ 𝑟𝑏)
and that S𝑟𝑖𝑔ℎ𝑡 = 𝑔𝑟𝑜𝑤 (𝑟𝑏, 𝑏𝑙𝑜𝑐𝑘 \ 𝑙𝑏).

Considering 𝑙𝑏, since the edges connecting S𝑙𝑒 𝑓 𝑡 to S𝑟𝑖𝑔ℎ𝑡 are
only inside the block containing 𝑙𝑏, and since grow is restricted to

S \ 𝑟𝑏, 𝑆𝑙𝑒 𝑓 𝑡 cannot contain any node in 𝑆𝑟𝑖𝑔ℎ𝑡 . Furthermore, since

𝑆𝑙𝑒 𝑓 𝑡 is connected, grow will visit all nodes in 𝑆𝑙𝑒 𝑓 𝑡 . Therefore,

since there are no nodes in S not in S𝑙𝑒 𝑓 𝑡 and S𝑟𝑖𝑔ℎ𝑡 , S𝑙𝑒 𝑓 𝑡 =

𝑔𝑟𝑜𝑤 (𝑙𝑏, 𝑏𝑙𝑜𝑐𝑘 \ 𝑟𝑏). Likewise, the same can be demonstrated in

the same way also for 𝑟𝑏. Therefore, CCP-Pair(S𝑙𝑒 𝑓 𝑡 ,S𝑟𝑖𝑔ℎ𝑡) will
also be enumerated by MPDP. □

Lemma5. Any Join-Pair(𝑆𝑙𝑒 𝑓 𝑡 , 𝑆𝑟𝑖𝑔ℎ𝑡) constructed from the CCP-Pair
(𝑙𝑏, 𝑟𝑏) for the block is a CCP-Pair for S.

Proof. Trivially, both 𝑆𝑙𝑒 𝑓 𝑡 , 𝑆𝑟𝑖𝑔ℎ𝑡 ≠ ∅. Further, 𝑆𝑙𝑒 𝑓 𝑡 ∩ 𝑆𝑟𝑖𝑔ℎ𝑡 =
∅ also hold true. By contradiction, let’s assume that 𝑆𝑙𝑒 𝑓 𝑡 ∩𝑆𝑟𝑖𝑔ℎ𝑡 ≠
∅. Therefore, there exists a node 𝑛 | 𝑛 ∈ 𝑆𝑙𝑒 𝑓 𝑡 ∩ 𝑆𝑟𝑖𝑔ℎ𝑡 ∧ 𝑛 ∉ 𝑏𝑙𝑜𝑐𝑘

that is reachable from a node 𝑛𝑙 in 𝑙𝑏 and a node 𝑛𝑟 in 𝑟𝑏, creating a

Session 2: Query Processing and Optimization 1 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

127

cycle. This implies that there exists a path outside the block joining

𝑙𝑏 and 𝑟𝑏, which contradicts the maximal property of the block.

In addition, both 𝑆𝑙𝑒 𝑓 𝑡 , 𝑆𝑟𝑖𝑔ℎ𝑡 induce connected subgraphs, as

they are the result of the grow function on connected subsets. Fi-

nally, S𝑙𝑒 𝑓 𝑡 is also connected to S𝑟𝑖𝑔ℎ𝑡 , since 𝑙𝑏, subset of S𝑙𝑒 𝑓 𝑡 , is
connected to 𝑟𝑏, subset of S𝑟𝑖𝑔ℎ𝑡 . □

From the above lemmas, the following theorem can be inferred:

Theorem 6. MPDP finds the optimal join order

3.2.4 Analysis. We now analyse the number of Join-Pairs evalu-
ated by MPDP in comparison to DPSUB.
Lemma 7. For a given set S, the number of subsets evaluated by
MPDP is lower than DPSUB.

Proof. Let’s start by observing that all subsets in a block are enu-

merated, which are 2
𝑏
, where 𝑏 is the size of the block. This implies

that, for the given set S, the total number of evaluated subsets is∑
𝑏𝑙𝑜𝑐𝑘𝑠 2

𝑏−1
. Furthermore, we also have that 1 +∑𝑏𝑙𝑜𝑐𝑘𝑠 𝑏 − 1 = 𝑛,

where 𝑛 = |S|. Therefore, ∑𝑏𝑙𝑜𝑐𝑘𝑠 2
𝑏−1 ≤ 2

𝑛−1
, which can be

rewritten as

∑
𝑏𝑙𝑜𝑐𝑘𝑠 2

𝑏 ≤ 2
𝑛
, where 2

𝑛
is the number of subsets

evaluated by DPSUB. Finally, the time complexity for each set S
from 𝑂 (2𝑛) to 𝑂 (𝐵 ∗ 2𝑏), where 𝑛 = |S|, 𝑏 is the max block size

(𝑏 ≤ 𝑛), and 𝐵 is the number of blocks in subgraph S. □

Lemma 8. All the CCP-Pairs corresponding to the connected set S
are enumerated only once.

Proof. Since we’ve proven that each CCP-Pair has edges con-
necting the two parts in only one block, it is impossible that the

same CCP-Pair is enumerated starting from different blocks. Fur-

ther, two different CCP-Pairs, (𝑙𝑏, 𝑟𝑏) and (𝑙𝑏 ′, 𝑟𝑏 ′), within the

same blockwill produce different CCP-Pairs inS, say (𝑆𝑙𝑒 𝑓 𝑡 , 𝑆𝑟𝑖𝑔ℎ𝑡)
and (𝑆 ′

𝑙𝑒 𝑓 𝑡
, 𝑆 ′

𝑟𝑖𝑔ℎ𝑡
). By contradiction, if 𝑆𝑙𝑒 𝑓 𝑡 = 𝑆 ′

𝑙𝑒 𝑓 𝑡
∧ 𝑆𝑟𝑖𝑔ℎ𝑡 =

𝑆 ′
𝑟𝑖𝑔ℎ𝑡

, then also 𝑙𝑏 = 𝑆𝑙𝑒 𝑓 𝑡 ∩ 𝑏𝑙𝑜𝑐𝑘 = 𝑆 ′
𝑙𝑒 𝑓 𝑡
∩ 𝑏𝑙𝑜𝑐𝑘 = 𝑙𝑏 ′ ∧ 𝑟𝑏 =

𝑆𝑟𝑖𝑔ℎ𝑡 ∩ 𝑏𝑙𝑜𝑐𝑘 = 𝑆 ′
𝑟𝑖𝑔ℎ𝑡

∩ 𝑏𝑙𝑜𝑐𝑘 = 𝑟𝑏 ′, which is a contradiction. □

4 HEURISTIC SOLUTIONS
Although MPDP is efficient, parallelizable and runs well on GPUs,

join order optimization is an NP-Hard problem. The time taken for

optimization increases exponentially. Hence, for very large joins, we

need to apply a heuristic optimization technique. We propose two

heuristic solutions: 1) augmenting MPDP into an existing heuristic

technique, IDP; 2) a novel join-graph conscious heuristic, UnionDP.

4.1 Iterative Dynamic Programming
Kossmann et al. [17] proposed two versions of Iterative Dynamic

Programming (IDP) techniques. The first one, IDP1, initially build

plans up to a given number of relations 𝑘 using the exhaustive al-

gorithm, picks the lowest cost plan for 𝑘 relation joins, materializes

it and then uses it as a single relation for subsequent iterations.

However, IDP1 has a time complexity of 𝑂 (𝑛𝑘), making it viable

only for small values of 𝑘 and 𝑛. Optimizing large queries requires

a too small value of 𝑘 , that negatively impacts the quality of plans.

The second version of IDP, IDP2, applies the heuristic a priori,

first generating a tentative plan and then optimizing it. It is made

up by two components: (1) Initial Join Order: A heuristic algorithm

to build an initial join plan (or join order). (2) Iterative DP: The

constructed join tree in the above step is the input to this component.

The idea is to use an optimal join order DP algorithm to optimize

the most costly parts of the join plan. At each step, the most costly

subtree up to size 𝑘 is selected for optimization, 𝑑𝑝 is run on its

relations to find the optimal plan 𝑇 ′, and finally it is replaced in

𝑇 by a single temporary table, therefore reducing the size of 𝑇 by

|𝑇 ′ | − 1 ∈ [1, 𝑘 − 1]. The loop will run until only one temporary

table representing the whole query remains in 𝑇 . At this point, all

temporary tables are reverted to their optimal tree form before

returning 𝑇 . Note that it is also possible to stop the while loop at

any iteration and obtain an acceptable plan, based on a given time

budget. Its time complexity is 𝑂 (𝑛3), if 𝑛 >> 𝑘 .

4.1.1 IDP2 with MPDP. MPDP can be incorporated into IDP2 by re-

placing the 𝑑𝑝 algorithm with MPDP. We use IDP2, since it performs

better than IDP1 for very large join queries. Also the advantage of

using MPDP inside 𝐼𝐷𝑃2, instead of another exact DP algorithm on

CPU, is that it allows for a bigger 𝑘 for the same planning time.
6

This is beneficial since the algorithm explores a much larger search

space and, therefore, it may be able to find a better plan. MPDP
is called from within 𝐼𝐷𝑃2 with the correct subset of the query

information that is to be processed at this state.

4.2 UnionDP
IDP2 might get stuck on a poor local optimum due to the initial plan

choice and its greedy nature, resulting in suboptimal plan choices.

Hence, we design a novel heuristic, UnionDP, that for the first-time
leverages the graph topology for such large queries.

The key idea of UnionDP is to partition the graph into tractable

sub-problems, solve each of the sub-problems with MPDP optimally,

then, recursively build the solution to the original problem from

these sub-problems. In order to produce quality plans in reasonable

times, the challenge would be to satisfy the following requirements:

(1) Partition Size: The size of each partition should be less than a

threshold value such that the partition can be optimized effi-

ciently by MPDP. Note that all the partition sizes ideally should

be close to the threshold value. If the partition sizes are too less

than the threshold, then, this possibly increases the optimiza-

tion time and may results in lesser quality plans as partitions

inhibits search space exploration.

(2) Weight of Cut Edges: We assign the weight of edges to be cost

(using a cost model) of joining the relations across the edge.

The sum of weight of cut edges of the partitions needs to be as

high as possible. This is because more costly join needs to be as

late as possible in the plan tree following the convention that

higher selectivity predicates are applied earlier in the plan tree.

This requirement typically trades-off with (1).

4.2.1 Algorithm Description. Algorithm 4 captures the pseu-

docode of UnionDP. The plans are built bottom up from the graph

partitions recursively until the entire plan is constructed. If the

number of relations is less than 𝑘 , then we use MPDP. The algorithm
assign weights to each edge based on a cost model (Line 6), and the

relations on either side of the edge are represented by leftRelSet and
rightRelSet, respectively. Our algorithm uses the UnionFind data

structure to maintain the partition information over relations, and

6
In our experiments on snowflake schema, we were able to use 𝑘 value of up to 25 for

GPU accelerated MPDP, with the optimization time at 100 tables being 550ms.

Session 2: Query Processing and Optimization 1 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

128

Algorithm 4 UnionDP

Inputs: 𝐺 = (𝑅, 𝐸): query graph

𝑘 : maximum number of relations in a partition

1: if 𝑛𝑅𝑒𝑙𝑠 (𝐺) ≤ 𝑘 then
2: 𝑇 ← MPDP(𝐺) // optimal sub-plan found by MPDP
3: return 𝑇
4: end if
5: For any edge, assign leftRelSet and rightRelSet to be set of rels

across the edge

6: assignEdgeWeights() //Assign edge weights using the cost

model

7: makeSet(G) // create a disjoint set for each relation in graph

8: for all edges in increasing order of 𝑠𝑖𝑧𝑒(leftRelSet + rightRelSet)
do

9: //Use weights of edges in case of tie for the above

10: if 𝑠𝑖𝑧𝑒(leftRelSet) + 𝑠𝑖𝑧𝑒(rightRelSet) ≤ 𝑘 then
11: Union(leftRelSet, rightRelSet)
12: end if
13: end for
14: /*End of Partition Phase */

15: for all induced subgraphs of the disjoint sets do
16: 𝑇 ′ ← MPDP(𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ)
17: createCompositeNode(𝑇 ′)
18: end for
19: 𝐺 ′ ← Graph(CompositeNodes, Cut-Edges across partitions)

20: return UnionDP(𝐺 ′)

for efficient find and union set operations. These sets are initialized

to individual relations (Line 7).

After the initialization, we traverse all the edges in increasing

size of the sum of leftRelSet and rightRelSet relations (Line 8). Ties
are broken by increasing weight of edges. leftRelSet and rightRelSet
sets of the chosen edge will be unioned to the same set/partition if

the size of their union is less or equal to 𝑘 (Line 10). At the end of

this phase, called as partition phase, size of all partitions are less than
or equal to 𝑘 . Then, all these partitions are individually optimized

using MPDP (Line 16). A new graph 𝐺 ′ is created with composite

nodes (for each partition) and cut edges across partitions as its

edge set (Line 17). The above procedure is repeated over 𝐺 ′ until
|𝐺 ′ | <= 𝑘 i.e. the size which MPDP can handle efficiently (Line 1).

This recursive idea helps UnionDP scale to 1000s of relations. More

details of the heuristic is presented in [21].

5 MPDP: GPU IMPLEMENTATION
We now present MPDP’s GPU implementation details. GPUs provide

a much higher degree of parallelism compared to multi-core CPUs.

Recall that a DP-based optimization happens at several levels, find-

ing the best sub-plan at each level. Since the metadata usually is

resident in the CPU, it calls functions in the GPU to find the best

subplans for every level 𝑖 repeatedly until the overall best plan is

found.

In our implementation, sets of relations (including adjacency

lists of base relations) are represented using a fixed-width bitmap

sets. The memo table is implemented using the fast Murmur3 hash-

ing algorithm (a simple open-addressing hash table). Algorithm 5

shows the general workflow of MPDP on GPUs. The memo table is

initialized at Line 1, then the memo table is filled with the values

derived from the base relations (Line 2) before starting the iterations

(Line 5). Each iteration is composed of the following steps:

Algorithm 5 : MPDP on GPU

Input: 𝑄𝐼 : Query Information

Output: Best (least cost) Plan

1: 𝑚𝑒𝑚𝑜 ← Empty hashtable (key: relation id as bitmapset)

2: for all 𝑏 ∈ 𝑄𝐼 .𝑏𝑎𝑠𝑒𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 do
3: add (𝑏.𝑖𝑑, 𝑏) to𝑚𝑒𝑚𝑜
4: end for
5: for 𝑖 := 2 to 𝑄𝐼 .𝑞𝑢𝑒𝑟𝑦𝑆𝑖𝑧𝑒 do
6: 𝑢𝑛𝑟𝑎𝑛𝑘 all possible sets of size 𝑖 (Set 𝑆𝑖 in MPDP)
7: 𝑓 𝑖𝑙𝑡𝑒𝑟 out not connected sets

8: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 all Join-Pairs evaluated by MPDP
9: 𝑝𝑟𝑢𝑛𝑒 retain the best one for each S (optional)

10: 𝑠𝑐𝑎𝑡𝑡𝑒𝑟 (𝑠𝑒𝑡, 𝑏𝑒𝑠𝑡 𝐽𝑜𝑖𝑛(𝑠𝑒𝑡)) to𝑚𝑒𝑚𝑜
11: end for
12: return best plan for query from𝑚𝑒𝑚𝑜

Unrank. All possible sets of relations of size 𝑖 , corresponding to

set 𝑆𝑖 in MPDP (Line 2 of Algorithm 3), are unranked using a combi-

natorial schema as in [24], and stored in a contiguous temporary

memory allocation, which can be reused in successive iterations.

Filter. All sets in 𝑆𝑖 , that are not connected are filtered, thereby

compacting the temporary array. This phase can be implemented

using one of the many stream compaction algorithms for GPU, e.g.

thrust::remove.
Evaluate. The evaluation of Join-Pairs, corresponding to Algo-

rithm 3, are performed with warp-level parallelism (one warp per

set), using the parallel version of Find-Blocks [30], that finds all

blocks in S. The warp first finds all the blocks for the given set,

then each thread works on a different Join-Pair. Later, each thread

unranks the blocks, checks validity and computes the cost.

Prune (optional). In this step only the best Join-Pair for each
S is kept. It can be easily implemented using any reduce-by-key

algorithm. It is performed inside the warp in a parallel fashion using

a classical warp reduction.

Scatter All key-value pairs (S, 𝑏𝑒𝑠𝑡 𝐽𝑜𝑖𝑛(S)) are saved in the

memo table to be used in future iterations, which is a parallel store

on the GPU hash table.

Finally, the best plan is returned by fetching from the GPUmemo

table. The final relation is recursively fetched using its left and right

join relations, building a join tree in CPU memory that can then be

passed to PostgreSQL as a schema to generate the final plan.

Enhancements. The presented algorithm is inspired by the COMP-

GPU algorithm from Meister et. al [24] and could be used to im-

plement on GPU. The main difference with previous work is to

propose the following enhancements:

Reducing the number of global memory writes. Having a separate

pruning phase, which runs in a separate kernel, requires storing the

plans found by the threads in global memory, in order to perform

the subsequent pruning step. To remove this additional overhead,

our implementation prunes the found plans in sharedmemory at the

end of the evaluate phase, so that only one write to global memory

per warp is required, with the best plan for the set evaluated by the

warp. No separate pruning step is required.

Avoiding ’If’ branch divergence. In order to filter out invalid

Join-Pairs, the trivial solution would be to just use an if condition,
but this would again cause branch divergence – a major cause

for performance degradation in GPUs. Here, threads who find an

Session 2: Query Processing and Optimization 1 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

129

invalid Join-Pairs will stall until the other threads in the warp

finish their execution, due to the SIMD nature of the GPU multi-

processors. We handle this issue by using Collaborative Context

Collection [16] to prevent excessive in-warp divergence. The basic

idea is to defer work by stashing it in shared memory until there is

enough work for all threads in the warp, either from enumerating

new pairs or from the stash. More details can be seen in [21].

6 RELATEDWORK
Join Order Optimization has been a well-studied area, with over

four decades of research. The importance of large queries with

1000 rels and inability of existing optimizers to handle them has

been discussed in [6, 7]. We categorize the prior work into optimal

algorithms and heuristic solutions.

Optimal Algorithms: One of the first approaches for join order

optimization algorithm was DPSIZE [28] – which is currently used

in many open-source and commercial databases, like PostgreSQL

and IBM DB2[2], respectively. DPSUB [35] uses a subset driven way

of plan enumeration (detailed in Section 2). Although DPSIZE and
DPSUB, depending on query join graph topology, evaluate a lot of

unnecessary Join-Pairs, they are parallelizable. Moerkette et al. [25]

propose the DPCCP algorithm, which uses a join graph based enu-

meration, and evaluates only CCP-Pairs. DPCCP outperforms both

DPSIZE and DPSUB while not considering cross products. However,

due to dependencies between Join-Pairs while plan enumeration,

DPCCP is difficult to parallelize. Our work, MPDP leverages massive

parallelizability aspect of DPSUB while minimizing redundant eval-

uation of Join-Pairs from DPCCP. A generalized version of DPCCP,
DPHyp, has been developed by the same authors [26], which also

consider hypergraphs, in order to handle non-inner and anti-join

predicates as well. Handling such cases is part of future work.

With the rise of multicore architectures, parallel approaches

for classical DP algorithms have been developed. PDP [10] dis-

cusses a CPU parallel version of DPSIZE. Although, it scales up well,
its performance is hindered by the evaluation of a lot of invalid

Join-Pairs. DPE [11] proposes a parallelization framework that can

parallelize any DP algorithm, including DPCCP, based on a producer-

consumer paradigm. Join-Pairs are enumerated in a producer thread

and stored in a dependency-aware buffer, while consumers extract

the Join-Pairs from the buffer and compute their cost based on a

cost model. Due to the sequential enumeration and the additional

reordering step, its parallelizability is limited. Trummer et al. in

[33] proposes a novel plan space decomposition for join order op-

timization using shared-nothing architectures over large clusters.

The main issue is that it is built on top of DPSIZE that enumerates

a lot of invalid Join-Pairs in realistic settings, and hence does not

scale to large number of relations. More recently, Meister et al. [24]

proposed GPU versions of DPSIZE and DPSUB algorithms.

We use [24]’s basic GPU implementation structure which has

unrank, filter, evaluate, prune and scatter phases. We propose en-

hancements over [24] such as reducing global writes by not having

a separate pruning phase, and avoiding branch divergence due to

’if’ condition by using Collaborative Context Collection.

Heuristic Solutions: Due to the NP-hard nature of join order op-

timization, there have been approaches that use heuristic solutions.

Some techniques look at only a limited search space of query plans.

IKKBZ [14, 18] limits the search space to left-deep plans. Similarly,

Trummer and Koch formulate the join order optimization problem

as a Mixed Integer Linear Programming (MILP) problem [34]. Tech-

niques such as GOO [8] and min-sel [32] greedily choose the best

subplans to find the query plan.

IDP [17], introduces a new class of algorithms, called Iterative

Dynamic Programming which we have discussed in Section 4.1.

More recently, Neumann et al. [27] proposed a new technique to

reduce the search space, called linearized DP (LinDP), which runs a

DP algorithm to optimize the best left-deep plan found by IKKBZ. In

order to handle large queries, they propose an adaptive optimization

technique. Their technique employs DPCCP for small queries (<14

tables), linearized DP for medium queries (between 14 and 100),

and IDP2 with linearized DP for large queries (>100 tables).

There are also randomized algorithms proposed based on Sim-

ulated Annealing and Iterative Improvement [15], Genetic Algo-

rithms [5, 13], Random Sampling [36]. Some recent work such as

[19, 22] use machine learning techniques for query optimization.

Primary issue with these approaches are that either they do not

scale well for large join queries considered in this work, or produce

low quality solutions [27].

7 EXPERIMENTAL RESULTS
In this section, we discuss the experimental evaluation of the MPDP
optimal algorithm and heuristic solutions presented in this paper.

We note that the focus of this paper is on optimization of large

queries, i.e, join of 10 or more relations. Additional results are

available in [21].

7.1 Experimental Setup
We use a server with dual Intel Xeon E5-2650L v3 CPU, with each

CPU having 12 cores and 24 threads with 755GB of RAM. We use a

Nvidia GTX 1080 GPU for running GPU based join algorithms. For

the experiments in Section 7.5, we use Amazon AWS [1].

We have implemented all the join order optimization techniques

(MPDP and all baselines) in the PostgreSQL 12 [4] engine. Since

implementing these algorithms (plus GPU-specific implementation)

require code changes to the optimizer module, we cannot provide

experimental results on commercial databases.

Cost Model: The cost model used by a query optimizer plays an

important role in determining the optimization time. While recent

works such as [27], have used a cost model based on output size

of different operators, i.e. 𝑐𝑜𝑢𝑡 , we use a more realistic cost model

which is close to the one used by PostgreSQL. For the suite of

queries considered in this paper, our cost model returns nearly the

same cost as PostgreSQL (within 5% in the worst case).
7

7.2 Optimal Algorithm Evaluation
Our goal for the experiments in this section is to see how our

optimal MPDP algorithm (both CPU and GPU based implementa-

tions) performs compared to other optimal DP algorithms. Since

7
We do not use PostgreSQL’s original cost model since we only consider inner equi-

joins, while PostgreSQL cost model covers a lot more cases (e.g. outer joins, inequality

joins as well as degree of parallelism > 1). Using the exact PostgreSQL cost model

would require us to rewrite from scratch over 20,000 lines of cost model code from

PostgreSQL for GPU based execution, which is beyond the scope of the paper.

Session 2: Query Processing and Optimization 1 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

130

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

O
p

ti
m

iz
a

ti
o

n
 T

im
e

 (
in

 m
s
)

Number of relations

Postgres (1CPU)
DPCCP (1CPU)

DPE (24CPU)
DPSub (GPU)

DPSize (GPU)
MPDP (24CPU)

MPDP (GPU)

Figure 6: Optimization times on star graph

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30 35

O
p

ti
m

iz
a

ti
o

n
 T

im
e

 (
in

 m
s
)

Number of relations

Postgres (1CPU)
DPCCP (1CPU)

DPE (24CPU)
DPSub (GPU)

DPSize (GPU)
MPDP (24CPU)

MPDP (GPU)

Figure 7: Optimization times on snowflake graph

all algorithms produce the optimal plan, we just compare their op-

timization times. We use both synthetic and real-world workloads

for the evaluation. Note that the size of the dataset does not make

much difference to the optimization time.

We use the following baselines in our experiments.

• Postgres (1CPU): DPSIZE based join ordering implemented by

PostgreSQL running on 1 CPU core.

• DPCCP (1CPU): State-of-the-art CPU Sequential DP algorithm,

DPCCP [25], running on 1 CPU core.

• DPE (24CPU): State-of-the-art CPU parallel algorithm, DPE. We

use the parallel version of DPCCP [11] running on 24 cores.

• DPSub (GPU): State-of-the-art GPU based DP algorithm [24]

using DPSUB. The COMB-GPU version from [24] is used.

• DPSize (GPU): Another state-of-the-art GPU based DP algo-

rithm [24] using DPSIZE. The H+F-GPU version is used here.

Other techniques such as sequential or parallel versions of DPSIZE
and DPSUB on CPU run much slower than their GPU variants, and

are hence omitted to make the graphs easier to read. Similarly, DPE
performs better than PDP [10], we skip PDP as well.

We set a timeout of 1 minute for the total optimization time,

and report the average optimization times across several queries of

each query size. For joins with less than 10 relations MPDP (GPU)
does not perform that well because of data transfers cost between

CPU and GPU for every level in the DP lattice. In terms of absolute

values, for such small queries the optimization times are usually

less than 10ms for all techniques including MPDP (GPU).

 0.1

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18 20

O
p

ti
m

iz
a

ti
o

n
 T

im
e

 (
in

 m
s
)

Number of relations

Postgres (1CPU)
DPCCP (1CPU)

DPE (24CPU)
DPSub (GPU)

DPSize (GPU)
MPDP (24CPU)

MPDP (GPU)

Figure 8: Optimization times on clique graph

7.2.1 Synthetic Workload. In this section, we present our eval-

uation results on synthetic workloads. We generate queries with

different type of join graphs andwith different number of relations.
8

We consider the following types of join graphs:

(1) Star join graph: In this type of join graph there is a single fact

relation to which other dimension relations join.

(2) Snowflake join graph: The join graph for these queries cre-

ates a snowflake pattern. The maximum depth we use is 4.

(3) Clique join graph In this type of join graph all relations have

joins to all other relations and the join graph is a clique. All

Join-Pairs in this case are valid Join-Pairs (equivalently, captur-
ing the cross-join scenario), and hence join ordering for these

graphs are more expensive to compute.

Star and snowflake join graphs are very common scenario with

analytics on data warehouse, while cliques are typically not as

realistic which showcase the performance when cross joins are

considered. For chain join graphs, only polynomial number of valid

Join-Pairs are present. The search space for join order optimization

in such queries are much smaller, and we found that DPCCP, DPE and
MPDP(GPU) were able to optimize 30 relation joins within 100 ms.

Hence, we do not consider them in our evaluation. The optimization

times for each of the above workload is presented next.

Star Join Graph: The optimization times for star join graphs are

shown in Figure 6. The X-axis denotes the number of relations

in the join query, while the Y-axis shows the optimization times

in millisecs. As can be seen from the figure, MPDP (GPU) outper-

forms all the baselines by at least an order of magnitude beyond

21 relations, and can generate the plan within 2s for 25 relations.

Moreover, MPDP (GPU) scales well with number of relations.

At 25 relations, MPDP (GPU) is 17x faster than its 24CPU version

because of the parallelism offered by GPUs. MPDP (GPU) is 20x

faster compared to DPSUB (GPU), due to evaluating 2805 times fewer

Join-Pairs. The gap is even bigger compared to DPSIZE (GPU) as it

evaluates 12024x fewer Join-Pairs at 20 relations. Also, MPDP (GPU)

has a speedup of at least 3 orders of magnitude over PostgreSQL
(1CPU) from 16-relations, and a speedup of at least 2 orders of

magnitude over DPCCP (1CPU) from 18-relations. DPE (24CPU)

takes over 70x longer to optimize queries with join of 23 relations

compared to MPDP (GPU).

8
The equivalence classes introduced because of joins in the given query may change

the join graph since they introduce implicit predicates. Our join graph also take into

account the equivalence classes.

Session 2: Query Processing and Optimization 1 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

131

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

O
p

ti
m

iz
a

ti
o

n
 T

im
e

 (
in

 m
s
)

Number of relations

Postgres (1CPU)
DPCCP (1CPU)

DPE (24CPU)

DPSub (GPU)
DPSize (GPU)

MPDP (24CPU)

MPDP (GPU)

Figure 9: Optimization times on MusicBrainz queries

Snowflake Join Graph: In this case too, as captured in Figure 7,

MPDP (GPU) outperforms all baselines by at least an order of mag-

nitude beyond 22 rels. MPDP (GPU) can perform join optimization

for 30 rels under 3s while other techniques timeout at 26 tables.

Similar to star queries, the most noticeable difference is between

MPDP(GPU) and DPSUB(GPU), with MPDP (GPU) being 56x faster at
27 tables. This increase is due to the more efficient enumeration of

Join-Pairs by MPDP.
Clique Join Graph: The optimization times for clique join graphs

is shown in Figure 8. Since these join graphs are fully connected,

pruning the search space is not feasible. Massive parallelization,

however, still play a crucial role, with all GPU based algorithms

outperforming all the CPU ones. Specifically, even DPSIZE (GPU)
overtakes all the CPU algorithms, which was not the case in the

previous two workloads. Furthermore, MPDP (GPU) performs the

best, closely followed by DPSUB(GPU). However, DPSIZE(GPU) is 3x
slower at 19 tables, because DPSIZE checks additional overlapping

pairs, which are not enumerated by MPDP (GPU) and DPSUB (GPU).

7.2.2 Real-world Workload. We evaluate our techniques on a

real world MusicBrainz dataset [3]. This database, consisting of 56

tables, include information about artists, release groups, releases,

recordings, works, and labels in the music industry. Since we do not

have access to query logs, we generate our own queries. We only

consider widely used primary key - foreign key joins. We pick a

relation at random and then do a random walk on the graph till we

get the required number of rels, 𝑛. For any given number of relation,

𝑛, we generate 15 such queries and report its average values. Note

that the generated queries can contain cycles.

The results for the join order optimization onMusicBrainz dataset

is shown in Figure 9 and is formatted similar to the graphs for the

synthetic datasets. Again, MPDP(GPU) outperforms all the baselines

at least by an order of magnitude beyond 24 relations. MPDP(GPU)
can optimize a 30 join querywithin 45s. For 26 tables, the MPDP(GPU)
is 14x faster than its CPU counterpart (24 threads) and 19x faster

than DPSUB(GPU). The outperformance over MPDP (24CPU) is due to
the increased parallelism provided by GPUs, while over DPSUB(GPU)
is because of evaluating fewer invalid Join-Pairs. Also MPDP (GPU)

is 80 times faster than DPE (24CPU) for joins with 23 rels.

DPSIZE-based algorithms do not perform well due to checking

too many overlapping pairs, with DPSIZE(GPU) doing better than
DPE (24CPU) for sizes between 13 and 22, only due to the higher

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25

E
xe

cu
tio

n
T

im
e

/ O
pt

im
iz

at
io

n
T

im
e

Number of relations

Postgres (1CPU)
MPDP (GPU)

(a) Primary Key - Foreign Key
Joins

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 0 5 10 15 20 25

E
xe

cu
tio

n
T

im
e

/ O
pt

im
iz

at
io

n
T

im
e

Number of relations

Postgres (1CPU)
MPDP (GPU)

(b) Non Primary Key - Foreign
Key Joins

Figure 10: Ratio of Execution and Optimization Times

computational power at disposal, before its optimization time be-

comes dominated by checking invalid Join-Pairs.

7.2.3 Comparison of Optimization and Execution Times. To eval-
uate the significance of optimization time for large queries, we

compare the execution time and the optimization time for queries

on the MusicBrainz dataset. Note that the execution times also de-

pend on the size of the dataset, query predicates and the execution

environment (eg: number of machines). Recall that our experimen-

tal setup is limited to a single machine. Primary key-foreign key

(PK-FK) joins and non PF-FK joins have different execution time

characteristics. Hence we use non PK-FK joins also for this exper-

iment. Figure 10 captures the ratio of execution vs optimization

times averaged over 10 queries for each relation size.

The results show that with the PostgreSQL optimizer, the opti-

mization time is a significant portion of the total query processing

time (i.e. optimization + execution) for large queries. For both PK-FK

and non-PK-FK scenarios, for 25 relations, the PostgreSQL opti-

mization timed out for all queries (with a timeout of 3 hours). We

conservatively set its optimization time to the timeout value. In

this case, the query execution, given the optimal plan, finishes in a

fraction of the timeout value. The same is not true with MPDP (GPU)
since the optimization time is much less as compared to PostgreSQL.

Thus, the experiment demonstrates that the savings in optimization

time achieved by MPDP is highly beneficial, especially for joins with

large number of relations.

7.2.4 JOB benchmark. We now present the optimization time for

queries from the Join order benchmark (JOB) [20]. While JOB does

not have many queries with large number of joins, (with the largest

query involving a 17 relation join) it is the only benchmark we

could find with at least some queries with large number of joins.

Further, as pointed out in [27], JOB mainly stresses on quality of

cardinality estimation.

The results on JOB for various optimization techniques are

shown in Figure 11. MPDP (GPU) starts outperforming others from

around 12 relations, while closely followed by DPSUB (GPU). The
performance gap between MPDP and DPSUB increases with more

relations, with MPDP (GPU) being 2.3 times faster at 17 relations.

7.2.5 Impact of GPU Implementation Enhancements. There are pri-
marily two enhancements over [24] (Section 5):

1) Reducing global memory writes through Kernel fusion, whose
improvement depends on complexity of cost function, and yield up

to 40% improvement on MPDP.

Session 2: Query Processing and Optimization 1 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

132

Table 1: Heuristic cost comparison for snowflake schema

Technique/

tables

30 40 50 60 80 100 200 400 500 600 800 1000

avg 95% avg 95% avg 95% avg 95% avg 95% avg 95% avg 95% avg 95% avg 95% avg 95% avg 95% avg 95%

GE-QO 1.9 2.3 2.1 2.5 2.2 2.8 2.4 2.8 2.4 3.0 2.5 3.1 3.1 3.8 - - - - - - - - - -

GOO 1.5 1.9 1.6 2.1 1.6 2.2 1.7 2.3 1.7 2.3 1.8 2.4 2.1 2.6 2.2 2.7 2.2 2.7 2.3 2.7 2.2 2.8 2.1 2.5

LinDP 1.6 2.2 2.0 2.8 2.3 3.2 2.7 3.9 3.4 4.6 4.2 5.7 4.6 6.8 4.4 7.0 4.4 7.0 4.0 6.6 3.2 5.5 3.0 5.3

IKKBZ 3.5 4.5 4.4 5.6 5.4 7.0 6.3 8.0 8.2 10.0 10.1 12.5 18.2 21.8 32.1 37.6 38.4 44.2 - - - - - -

IDP2-MPDP (15) 1.2 1.5 1.3 1.7 1.4 1.8 1.4 1.8 1.5 1.9 1.5 1.9 1.7 2.2 1.7 2.2 1.7 2.2 1.8 2.2 1.9 2.3 1.9 2.2

IDP2-MPDP (25) 1.1 1.5 1.2 1.6 1.3 1.8 1.4 1.8 1.4 1.8 1.5 1.9 1.6 2.0 1.7 2.2 1.7 2.0 1.7 2.2 1.7 2.2 1.7 2.2

UnionDP-MPDP (15) 1.0

Table 2: Heuristic cost comparison for star schema

Technique/

tables

30 40 50 60 80 100 200 300 400 500 600

avg 95% avg 95% avg 95% avg 95% avg 95% avg 95% avg 95% avg 95% avg 95% avg 95% avg 95%

GE-QO 1.2 1.5 1.3 1.6 1.4 1.9 1.4 1.7 1.4 1.8 1.3 1.7 1.3 1.6 - - - - - - - -

GOO 1.4 2.3 1.6 2.6 1.7 2.8 1.7 2.8 1.7 2.9 1.7 2.9 1.5 2.6 1.6 2.9 1.7 2.9 1.6 2.9 1.6 2.9

LinDP 1.4 2.3 1.6 2.6 1.6 2.8 1.7 2.8 1.6 2.9 1.7 3.0 1.5 2.6 1.6 2.9 1.7 2.9 1.6 2.8 1.6 2.9

IKKBZ 1.4 2.3 1.6 2.6 1.7 2.8 1.7 2.8 1.7 2.9 1.7 2.9 1.5 2.6 1.6 2.9 1.7 2.9 1.6 2.8 - -

IDP2-MPDP (15) 1.0
IDP2-MPDP (25) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 - - - - - - - - - -

UnionDP-MPDP (15) 1.0 - -

 0.1

 1

 10

 100

 1000

 10000

 4 6 8 10 12 14 16 18

O
p

ti
m

iz
a

ti
o

n
 T

im
e

 (
in

 m
s
)

Number of relations

Postgres (1CPU)
DPCCP (1CPU)

DPE (24CPU)
DPSub (GPU)

DPSize (GPU)
MPDP (24CPU)

MPDP (GPU)

Figure 11: JOB query optimization times

2) Collaborate Context Collection (CCC), whose impact depends

on graph topology, achieve up to 3X improvement with MPDP.

7.3 Heuristic Solution Evaluation
The optimization time using MPDP, although much better than other

techniques, rises exponentially with the number of relations. In

order to evaluate larger join sizes than what would be feasible

using our techniques, we presented heuristics in Section 4. In this

experiment, we evaluate our IDP2 based heuristic and UnionDP

with other heuristics based on the quality of the plan produced (i.e.

total cost) using our PostgreSQL-like cost model.

Note that we do not compare the actual query execution times

but only compare the costs since the actual execution time may be

different fromwhat is estimated due to errors in cost and cardinality

models. Handling those errors are beyond the scope of this paper.

In this set of experiments, we compare our optimization tech-

niques with the following heuristic techniques:

• GE-QO: Genetic algorithm based optimization used in

PostgreSQL [37]. We use the default parameters.

• GOO [8]: Greedy Operator Order which uses the resulting join

relation size to greedily pick the best join at each step.

• IKKBZ [14, 18]: Technique that finds the best left-deep tree, which
is also used in linearized DP. It uses the 𝐶𝑜𝑢𝑡 cost function to

estimate the best left-deep join order.

• LinDP [27]: Adaptive optimization technique, which chooses

among DPCCP, linearized DP and IDP2 using GOO and the lin-

earized DP depending on query size. The linearized DP is a novel

technique that optimizes the left-deep plan found by IKKBZ. The

default thresholds presented in the original paper have been used.

For all IDP2 variants, we use GOO (Greedy Operator Ordering)

for the heuristic step. We evaluated IDP2 for 𝑘 = 5, 10, 15, 20, 25.

Due to space limitations, we just present its median (i.e. 15) and

maximum value (i.e. 25). As we increase 𝑘 the plan quality increases.

For instance, IDP2-MPDP for 30 rels, has normalized cost values 1.4,

1.27, 1.23, 1.17 and 1.14, for 𝑘 = 5, 10, 15, 20, 25, respectively. Further,

higher values of 𝑘 (i.e., > 25) can be chosen with larger timeouts.

For UnionDP, we use 𝑘 = 15 since plan quality were similar with

𝑘 = 25, while running much faster.

We use the snowflake and star synthetic schema to evaluate

the approximation heuristics. We also ran experiments on clique

join graphs. The snowflake schema is the most likely one to be

used in analytical queries for such large queries. We only consider

primary key - foreign key joins. For the star schema, we generate

queries with selections so that different join orders would result

in different costs of intermediate joins. In order to get statistically

significant results to compare the costs, we generate 100 queries for

each join relation size that we consider in the heuristic optimization

techniques. We also set the optimization timeout to 1 min. We do

not use the MusicBrainz database as it has only 56 tables.

The relative execution cost, for the snowflake schema, as given

by the cost model is shown in Table 1. For each query, we set the

cost of the best plan found by any algorithm to 1 and find the

relative cost of other techniques with respect to the best plan. We

show the average relative cost and the 95th percentile of the relative

cost measured in this manner across 100 queries. The best relative

costs for each case are marked in bold.

Session 2: Query Processing and Optimization 1 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

133

As shown in the table, UnionDP-MPDP (15) provide the best

query plans across all join sizes. This is because UnionDP can easily

create partitions by removing single expensive edges. IDP2-MPDP (25)
performs the second best. We also see that there is some advantage

in using a bigger value of 𝑘 for IDP2-MPDP (25). The genetic opti-
mization used by PostgreSQL produces plans that are on average

2-4x more expensive than the best-found plan, also, it timeouts after

200 rels. UnionDP-MPDP (15) produced plans that were 1.5-2.3x

times cheaper than GOO on average.

IKKBZ scales poorly with number of rels, going up to a factor of

38.4 (on average) at 500 tables because it only considers left-deep

plans. LinDP achieves 1.6-4.6x worse plans in average compared to

UnionDP-MPDP (15) while the 95-percentile goes up to 7x.

For star join graphs, the results are shown in Table 2. Both our

techniques, produce the cheapest query plans which are much

better than other techniques. For instance at 100 relations, GE-QO,

GOO, LinDP and IKKBZ are 1.3-1.7x costlier than that of IDP2-MPDP
and UnionDP-MPDP on average. Compared to the case of snowflake

schema, IKKBZ does not perform as bad since the optimal join order

also falls in IKKBZ’s search space of left-deep plans.

For large uncommon clique join graphs, we summarize the eval-

uation results in the interest of space. All techniques time out much

earlier (compared to snowflake) with LinDP at 70 rels, while GOO,

IDP2-MPDP and UnionDP-MPDP at around 100 rels. Here, IDP2-

MPDP has the best performance. However, GOO produce up to 2x

lesser quality plans compared to IDP2-MPDP. UnionDP does not

perform that well because it has too many edges which creates an

issue for balancing partition size and maximizing cut edges.

7.4 Scalability on CPU
Now we will see how our solution scales with CPU threads. We

use a 20 rels query on MusicBrainz and vary the number of threads

from 1 to 24. The results are similar for other relation sizes. The

scalability factor also depends on the cost function complexity (also

captured in [23]). We use the cost function as described earlier to

get results representative of a real-world scenario.

The scalability results are shown in Figure 12. The X-axis repre-

sents the total number of threads used, while the Y-axis represents

the speedup with respect to a single thread execution of the cor-

responding algorithm. MPDP scales much better compared to DPE.

This is because DPE cannot parallelize the candidate join pairs

enumeration, but can only evaluate join costs in parallel. Further,

MPDP scales sub-linearly beyond 6 threads since the CPU caches get

swapped out when many join pairs are evaluated in parallel.

7.5 Optimization cost comparison
While the above experiments provide analysis between different

CPU and GPU implementations of different algorithms, the mon-

etary cost of using different hardware may be different. In this

experiment, we compare the cost of optimization of these tech-

niques while using Amazon AWS cloud instances.

Since the CPU algorithms do not scale linearly with large number

of cores, we experimented with different AWS size instances and

picked the one that is the most cost effective. For the single threaded

CPU algorithms, DPCCP and Postgres optimizer, we used a c5.large
instance which has 2 vCPU cores and 4 GiB of memory. For DPE

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25

S
p
e
e
d
u
p
 o

v
e
r

s
in

g
le

 t
h
re

a
d

Number of threads

MPDP (CPU)
DPE (CPU)

Figure 12: CPU Scalability on MusicBrainz.

0.0000010

0.0000100

0.0001000

0.0010000

0.0100000

0.1000000

1.0000000

 0 5 10 15 20 25 30

O
p

ti
m

iz
a

ti
o

n
 C

o
s
t

(i
n

 c
e

n
ts

)

Number of relations

Postgres (1CPU)
DPCCP (1CPU)

DPE (4CPU)
DPSub (GPU)

DPSize (GPU)
MPDP (4CPU)
MPDP (GPU)

Figure 13: Cost of optimization on AWS

and MPDP (CPU) we used a c5.xlarge instance which has 4 vCPU

cores and 8 GiB of memory. For GPU based algorithms, we used a

g4dn.xlarge instance which has an NVIDIA T4 GPU.

The result of the experiment is shown in Figure 13. The X-axis

shows the number of relations, while the Y-axis shows the cost of

optimization for a single query in U.S. cents. We obtained the cost

by multiplying the time taken for the optimization with the amount

paid for running the instance per unit time. For smaller queries,

PostgreSQL and DPCCP are cheaper. However, for larger queries

(beyond 15 rels), MPDP (GPU) turns out to be the cheapest. For

instance, MPDP is around an order of magnitude cheaper compared

to next best DPE from 23 relations.

8 CONCLUSIONS
In this paper, we described techniques for join order optimization

for queries with large number of joins. Our query optimization

technique is capable of running in parallel, while significantly prun-

ing the search space and can be efficiently implemented on GPUs

too. Our experiments, in case of exact scenario, show that our tech-

niques significantly outperform other state-of-the-art techniques in

terms of query optimization time. Our heuristic solutions allow us

to efficiently explore a larger search space for very large join queries

(eg: 1000 rels), thereby allowing us to find plans with much better

costs compared to state-of-the-art heuristic techniques. Areas of

future work may include, using our optimization framework for

scenarios with increased optimization search space such as cloud

analytics, graph analytics and bigdata systems.

Session 2: Query Processing and Optimization 1 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

134

REFERENCES
[1] 2021. Amazon AWS. https://aws.amazon.com.

[2] 2021. IBM DB2. https://www.ibm.com/analytics/db2.

[3] 2021. MusicBrainz - The Open Music Encyclopedia. https://musicbrainz.org/.

[4] 2021. PostgreSQL. https://www.postgresql.org/docs/12/index.html.

[5] Kristin P. Bennett, Michael C. Ferris, and Yannis E. Ioannidis. 1991. A Genetic

Algorithm for Database QueryOptimization. In Proceedings of the 4th International
Conference on Genetic Algorithms, ICGA. 400–407.

[6] Yijou Chen, Richard L Cole, William J McKenna, Sergei Perfilov, Aman Sinha, and

Eugene Szedenits Jr. 2009. Partial join order optimization in the paraccel analytic

database. In Proceedings of the 2009 ACM SIGMOD International Conference on
Management of data. 905–908.

[7] Nicolas Dieu, Adrian Dragusanu, Françoise Fabret, François Llirbat, and Eric

Simon. 2009. 1,000 Tables Inside the From. Proc. VLDB Endow. (2009), 1450–1461.
[8] Leonidas Fegaras. 1998. A New Heuristic for Optimizing Large Queries. In

Proceedings of the Database and Expert Systems Applications, 9th International
Conference, DEXA. 726–735.

[9] Robert Gravelle. 2010. Identifying and Eliminating the Dreaded Cartesian

Product. https://www.databasejournal.com/features/mysql/article.php/3901221/

Identifying-and-Eliminating-the-Dreaded-Cartesian-Product.htm.

[10] Wook-Shin Han, Wooseong Kwak, Jinsoo Lee, Guy M. Lohman, and Volker Markl.

2008. Parallelizing query optimization. Proc. VLDB Endow. 1, 1 (2008), 188–200.
[11] Wook-Shin Han and Jinsoo Lee. 2009. Dependency-aware reordering for paral-

lelizing query optimization in multi-core CPUs. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data. 45–58.

[12] John E. Hopcroft and Robert Endre Tarjan. 1973. Efficient Algorithms for Graph

Manipulation [H] (Algorithm 447). Commun. ACM 16, 6 (1973), 372–378.

[13] Jorng-Tzong Horng, Baw-Jhiune Liu, and Cheng-Yan Kao. 1994. A Genetic

Algorithm for Database Query Optimization. In Proceedings of the First IEEE
Conference on Evolutionary Computation, IEEE World Congress on Computational
Intelligence. 350–355.

[14] Toshihide Ibaraki and Tiko Kameda. 1984. On the Optimal Nesting Order for

Computing N-Relational Joins. ACM Trans. Database Syst. 9, 3 (1984), 482–502.
[15] Yannis E. Ioannidis and Younkyung Cha Kang. 1990. Randomized Algorithms

for Optimizing Large Join Queries. In Proceedings of the 1990 ACM SIGMOD
International Conference on Management of data. 312–321.

[16] Farzad Khorasani, Rajiv Gupta, and Laxmi N. Bhuyan. 2015. Efficient warp

execution in presence of divergence with collaborative context collection. In

Proceedings of the 48th International Symposium on Microarchitecture, MICRO.
204–215.

[17] Donald Kossmann and Konrad Stocker. 2000. Iterative dynamic programming:

a new class of query optimization algorithms. ACM Trans. Database Syst. 25, 1
(2000), 43–82.

[18] Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo. 1986. Optimization of

Nonrecursive Queries. In Proceedings of the 12th International Conference on Very
Large Data Bases, VLDB. 128–137.

[19] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M. Hellerstein, and

Ion Stoica. 2018. Learning to Optimize Join Queries With Deep Reinforcement

Learning. (2018).

[20] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,

and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204–215.

[21] Riccardo Mancini, Srinivas Karthik, Bikash Chandra, Vasilis Mageirakos, and

Anastasia Ailamaki. 2022. Efficient Massively Parallel Join Optimization for Large

Queries. arXiv (2022). https://arxiv.org/abs/2202.13511

[22] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-

izadeh, and Tim Kraska. 2021. Bao: Making learned query optimization practical.

In Proceedings of the 2021 ACM SIGMOD International Conference on Management
of data. 1275–1288.

[23] Andreas Meister and Gunter Saake. 2017. Cost-Function Complexity Matters:

When Does Parallel Dynamic Programming Pay Off for Join-Order Optimization.

In Advances in Databases and Information Systems - 21st European Conference,
ADBIS. 297–310.

[24] Andreas Meister and Gunter Saake. 2020. GPU-accelerated dynamic pro-

gramming for join-order optimization. (2020). TechnicalReport(2020):https:

//www.inf.ovgu.de/inf_media/downloads/forschung/technical_reports_und_

preprints/2020/TechnicalReport+02_2020-p-8268.pdf

[25] Guido Moerkotte and Thomas Neumann. 2006. Analysis of Two Existing and One

New Dynamic Programming Algorithm for the Generation of Optimal Bushy Join

Trees without Cross Products. In Proceedings of the 32nd International Conference
on Very Large Data Bases, VLDB. 930–941.

[26] Guido Moerkotte and Thomas Neumann. 2008. Dynamic programming strikes

back. In Proceedings of the 2008 ACM SIGMOD International Conference on Man-
agement of data. 539–552.

[27] Thomas Neumann and Bernhard Radke. 2018. Adaptive Optimization of Very

Large Join Queries. In Proceedings of the 2018 ACM SIGMOD International Confer-
ence on Management of data. 677–692.

[28] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A.

Lorie, and Thomas G. Price. 1979. Access Path Selection in a Relational Database

Management System. In Proceedings of the 1979 ACM SIGMOD International
Conference on Management of data. 23–34.

[29] Anil Shanbhag and S Sudarshan. 2014. Optimizing join enumeration in

transformation-based query optimizers. Proc. VLDB Endow. 7, 12 (2014), 1243–
1254.

[30] George M. Slota and Kamesh Madduri. 2014. Simple parallel biconnectivity

algorithms for multicore platforms. In 21st International Conference on High
Performance Computing, HiPC. 1–10.

[31] Jeff Smith. 2005. The power of the Cross Join. https://weblogs.sqlteam.com/jeffs/

2005/09/12/7755/.

[32] Arun N. Swami. 1989. Optimization of Large Join Queries: Combining Heuristic

and Combinatorial Techniques. In Proceedings of the 1989 ACM SIGMOD Interna-
tional Conference on Management of data. 367–376.

[33] Immanuel Trummer and Christoph Koch. 2016. Parallelizing Query Optimization

on Shared-Nothing Architectures. Proc. VLDB Endow. 9, 9 (2016), 660–671.
[34] Immanuel Trummer and Christoph Koch. 2017. Solving the Join Ordering Problem

via Mixed Integer Linear Programming. In Proceedings of the 2017 ACM SIGMOD
International Conference on Management of data. 1025–1040.

[35] Bennet Vance and David Maier. 1996. Rapid Bushy Join-order Optimization

with Cartesian Products. In Proceedings of the 1996 ACM SIGMOD International
Conference on Management of data. 35–46.

[36] Florian Waas and Arjan Pellenkoft. 2000. Join Order Selection - Good Enough Is

Easy. In Advances in Databases, 17th British National Conference on Databases,
BNCOD. 51–67.

[37] Darrell Whitley. 1994. A genetic algorithm tutorial. Statistics and Computing 4, 2

(1994), 65–85.

Session 2: Query Processing and Optimization 1 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

135

https://aws.amazon.com
https://www.ibm.com/analytics/db2
https://www.postgresql.org/docs/12/index.html
https://www.databasejournal.com/features/mysql/article.php/3901221/Identifying-and-Eliminating-the-Dreaded-Cartesian-Product.htm
https://www.databasejournal.com/features/mysql/article.php/3901221/Identifying-and-Eliminating-the-Dreaded-Cartesian-Product.htm
https://arxiv.org/abs/2202.13511
Technical Report (2020): https://www.inf.ovgu.de/inf_media/downloads/forschung/technical_reports_und_preprints/2020/TechnicalReport+02_2020-p-8268.pdf
Technical Report (2020): https://www.inf.ovgu.de/inf_media/downloads/forschung/technical_reports_und_preprints/2020/TechnicalReport+02_2020-p-8268.pdf
Technical Report (2020): https://www.inf.ovgu.de/inf_media/downloads/forschung/technical_reports_und_preprints/2020/TechnicalReport+02_2020-p-8268.pdf
https://weblogs.sqlteam.com/jeffs/2005/09/12/7755/
https://weblogs.sqlteam.com/jeffs/2005/09/12/7755/

	Abstract
	1 Introduction
	2 Problem Framework and Background
	2.1 Valid Join-Pair (CCP-Pair)
	2.2 Generic DPSub Algorithm
	2.3 Shortcomings of DPSUB
	2.4 Relevant Graph Theoretic Terminologies

	3 MPDP: A New Massively Parallel Optimal Algorithm
	3.1 Tree Join Graphs
	3.2 Generalization

	4 Heuristic Solutions
	4.1 Iterative Dynamic Programming
	4.2 UnionDP

	5 MPDP: GPU Implementation
	6 Related Work
	7 Experimental Results
	7.1 Experimental Setup
	7.2 Optimal Algorithm Evaluation
	7.3 Heuristic Solution Evaluation
	7.4 Scalability on CPU
	7.5 Optimization cost comparison

	8 Conclusions
	References

